001     829452
005     20210129230304.0
024 7 _ |a 10.1038/nrneurol.2017.44
|2 doi
024 7 _ |a 1745-834X
|2 ISSN
024 7 _ |a 1745-8358
|2 ISSN
024 7 _ |a 1759-4758
|2 ISSN
024 7 _ |a 1759-4766
|2 ISSN
024 7 _ |a WOS:000400369800004
|2 WOS
024 7 _ |a altmetric:18584935
|2 altmetric
024 7 _ |a pmid:28387340
|2 pmid
037 _ _ |a FZJ-2017-03151
082 _ _ |a 610
100 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Advances in neuro-oncology imaging
260 _ _ |a New York, NY
|c 2017
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1494509974_10087
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Despite the fact that MRI has evolved to become the standard method for diagnosis and monitoring of patients with brain tumours, conventional MRI sequences have two key limitations: the inability to show the full extent of the tumour and the inability to differentiate neoplastic tissue from nonspecific, treatment-related changes after surgery, radiotherapy, chemotherapy or immunotherapy. In the past decade, PET involving the use of radiolabelled amino acids has developed into an important diagnostic tool to overcome some of the shortcomings of conventional MRI. The Response Assessment in Neuro-Oncology working group — an international effort to develop new standardized response criteria for clinical trials in brain tumours — has recommended the additional use of amino acid PET imaging for brain tumour management. Concurrently, a number of advanced MRI techniques such as magnetic resonance spectroscopic imaging and perfusion weighted imaging are under clinical evaluation to target the same diagnostic problems. This Review summarizes the clinical role of amino acid PET in relation to advanced MRI techniques for differential diagnosis of brain tumours; delineation of tumour extent for treatment planning and biopsy guidance; post-treatment differentiation between tumour progression or recurrence versus treatment-related changes; and monitoring response to therapy. An outlook for future developments in PET and MRI techniques is also presented.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 1
|u fzj
700 1 _ |a Hattingen, Elke
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 3
|u fzj
773 _ _ |a 10.1038/nrneurol.2017.44
|0 PERI:(DE-600)2491518-X
|n 5
|p 279-289
|t Nature reviews / Neurology
|v 13
|y 2017
|x 1759-4766
856 4 _ |u https://juser.fz-juelich.de/record/829452/files/nrneurol.2017.44.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829452/files/nrneurol.2017.44.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829452/files/nrneurol.2017.44.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829452/files/nrneurol.2017.44.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829452/files/nrneurol.2017.44.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829452/files/nrneurol.2017.44.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829452
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT REV NEUROL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT REV NEUROL : 2015
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21