000829474 001__ 829474
000829474 005__ 20220930130121.0
000829474 0247_ $$2doi$$a10.1038/s41598-017-02410-y
000829474 0247_ $$2Handle$$a2128/14553
000829474 0247_ $$2WOS$$aWOS:000401614900012
000829474 0247_ $$2altmetric$$aaltmetric:20591829
000829474 0247_ $$2pmid$$apmid:28526839
000829474 037__ $$aFZJ-2017-03172
000829474 041__ $$aEnglish
000829474 082__ $$a000
000829474 1001_ $$0P:(DE-HGF)0$$aSchneider, Mario$$b0
000829474 245__ $$aFluorescence correlation spectroscopy reveals a cooperative unfolding of monomeric amyloid-β 42 with a low Gibbs free energy
000829474 260__ $$aLondon$$bNature Publishing Group$$c2017
000829474 3367_ $$2DRIVER$$aarticle
000829474 3367_ $$2DataCite$$aOutput Types/Journal article
000829474 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1496059176_24554
000829474 3367_ $$2BibTeX$$aARTICLE
000829474 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829474 3367_ $$00$$2EndNote$$aJournal Article
000829474 520__ $$aThe amyloid-beta peptide (Aβ) plays a major role in the progression of Alzheimer’s disease. Due to its high toxicity, the 42 amino acid long isoform Aβ42 has become of considerable interest. The Aβ42 monomer is prone to aggregation down to the nanomolar range which makes conventional structural methods such as NMR or X-ray crystallography infeasible. Conformational information, however, will be helpful to understand the different aggregation pathways reported in the literature and will allow to identify potential conditions that favour aggregation-incompetent conformations. In this study, we applied fluorescence correlation spectroscopy (FCS) to investigate the unfolding of Alexa Fluor 488 labelled monomeric Aβ42 using guanidine hydrochloride as a denaturant. We show that our Aβ42 pre-treatment and the low-nanomolar concentrations, typically used for FCS measurements, strongly favour the presence of monomers. Our results reveal that there is an unfolding/folding behaviour of monomeric Aβ42. The existence of a cooperative unfolding curve suggests the presence of structural elements with a Gibbs free energy of unfolding of about 2.8 kcal/mol.
000829474 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000829474 7001_ $$0P:(DE-HGF)0$$aWalta, Stefan$$b1
000829474 7001_ $$0P:(DE-HGF)0$$aCadek, Chris$$b2
000829474 7001_ $$0P:(DE-Juel1)IHRS-BioSoft-140012$$aRichtering, Walter$$b3$$eCorresponding author
000829474 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b4$$eCorresponding author$$ufzj
000829474 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-017-02410-y$$p2154$$tScientific reports$$v7$$x2045-2322$$y2017
000829474 8564_ $$uhttps://juser.fz-juelich.de/record/829474/files/Fluorescence%20correlation%20spectroscopy%20reveals%20a%20cooperative%20unfolding%20of%20monomeric%20amyloid-%CE%B2%2042%20with%20a%20low%20Gibbs%20free%20energy.pdf$$yOpenAccess
000829474 8564_ $$uhttps://juser.fz-juelich.de/record/829474/files/Fluorescence%20correlation%20spectroscopy%20reveals%20a%20cooperative%20unfolding%20of%20monomeric%20amyloid-%CE%B2%2042%20with%20a%20low%20Gibbs%20free%20energy.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829474 8767_ $$82676049262$$92017-04-17$$d2017-04-21$$eAPC$$jZahlung erfolgt$$pSREP-16-52669B
000829474 909CO $$ooai:juser.fz-juelich.de:829474$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000829474 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b0$$kFZJ
000829474 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b4$$kFZJ
000829474 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000829474 9141_ $$y2017
000829474 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829474 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000829474 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000829474 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000829474 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000829474 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000829474 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000829474 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000829474 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829474 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829474 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829474 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829474 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829474 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829474 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829474 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829474 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000829474 9801_ $$aAPC
000829474 9801_ $$aFullTexts
000829474 980__ $$ajournal
000829474 980__ $$aVDB
000829474 980__ $$aUNRESTRICTED
000829474 980__ $$aI:(DE-Juel1)ICS-6-20110106
000829474 980__ $$aAPC
000829474 981__ $$aI:(DE-Juel1)IBI-7-20200312