000829475 001__ 829475
000829475 005__ 20210129230307.0
000829475 0247_ $$2doi$$a10.1104/pp.16.01816
000829475 0247_ $$2ISSN$$a0032-0889
000829475 0247_ $$2ISSN$$a1532-2548
000829475 0247_ $$2WOS$$aWOS:000403152200026
000829475 0247_ $$2altmetric$$aaltmetric:18210899
000829475 0247_ $$2pmid$$apmid:28351909
000829475 037__ $$aFZJ-2017-03173
000829475 041__ $$aEnglish
000829475 082__ $$a580
000829475 1001_ $$0P:(DE-HGF)0$$aHochberg, Uri$$b0$$eCorresponding author
000829475 245__ $$aStomatal closure, basal leaf embolism and shedding protect the hydraulic integrity of grape stems
000829475 260__ $$aRockville, Md.$$bSoc.$$c2017
000829475 3367_ $$2DRIVER$$aarticle
000829475 3367_ $$2DataCite$$aOutput Types/Journal article
000829475 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1496748200_28734
000829475 3367_ $$2BibTeX$$aARTICLE
000829475 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829475 3367_ $$00$$2EndNote$$aJournal Article
000829475 520__ $$aThe time scale of stomatal closure and xylem cavitation during plant dehydration, as well as the fate of embolised organs, is under debate, largely due to methodological limitations in the evaluation of embolism. While some argue that complete stomatal closure precedes the occurrence of embolism, others believe that the two are contemporaneous processes that are accompanied with daily xylem refilling. Here we utilize an optical light transmission method, to continuously monitor xylem cavitation in leaves of dehydrating grapevines (Vitis vinifera L.) in concert with stomatal conductance and stem and petiole hydraulic measurements. Magnetic resonance imaging (MRI) was used to continuously monitor xylem cavitation and flow rates in the stem of an intact vine during 10 days of dehydration. The results showed that complete stomatal closure preceded the appearance of embolism in the leaves and the stem by several days. Basal leaves were more vulnerable to xylem embolism than apical leaves and, once embolised, were shed, thereby preventing further water loss and protecting the hydraulic integrity of younger leaves and the stem. As a result, embolism in the stem was minimal even when drought led to complete leaf shedding. These findings suggest that grapevines avoid xylem embolism rather than tolerate it.
000829475 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000829475 588__ $$aDataset connected to CrossRef
000829475 7001_ $$0P:(DE-Juel1)129422$$aWindt, Carel$$b1
000829475 7001_ $$0P:(DE-HGF)0$$aPonomarenko, Alexandre$$b2
000829475 7001_ $$0P:(DE-HGF)0$$aZhang, Yong-Jiang$$b3
000829475 7001_ $$0P:(DE-HGF)0$$aGersony, Jessica$$b4
000829475 7001_ $$0P:(DE-HGF)0$$aRockwell, Fulton E$$b5
000829475 7001_ $$0P:(DE-HGF)0$$aHolbrook, N. Michele$$b6
000829475 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.16.01816$$gp. pp.01816.2016 -$$n2$$p764-775$$tPlant physiology$$v174$$x1532-2548$$y2017
000829475 8564_ $$uhttps://juser.fz-juelich.de/record/829475/files/Plant%20Physiol.-2017-Hochberg-764-75.pdf$$yRestricted
000829475 8564_ $$uhttps://juser.fz-juelich.de/record/829475/files/Plant%20Physiol.-2017-Hochberg-764-75.gif?subformat=icon$$xicon$$yRestricted
000829475 8564_ $$uhttps://juser.fz-juelich.de/record/829475/files/Plant%20Physiol.-2017-Hochberg-764-75.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829475 8564_ $$uhttps://juser.fz-juelich.de/record/829475/files/Plant%20Physiol.-2017-Hochberg-764-75.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829475 8564_ $$uhttps://juser.fz-juelich.de/record/829475/files/Plant%20Physiol.-2017-Hochberg-764-75.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829475 8564_ $$uhttps://juser.fz-juelich.de/record/829475/files/Plant%20Physiol.-2017-Hochberg-764-75.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829475 909CO $$ooai:juser.fz-juelich.de:829475$$pVDB
000829475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129422$$aForschungszentrum Jülich$$b1$$kFZJ
000829475 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000829475 9141_ $$y2017
000829475 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000829475 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829475 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829475 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829475 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT PHYSIOL : 2015
000829475 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829475 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829475 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829475 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829475 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829475 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829475 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000829475 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000829475 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000829475 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT PHYSIOL : 2015
000829475 920__ $$lyes
000829475 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000829475 980__ $$ajournal
000829475 980__ $$aVDB
000829475 980__ $$aI:(DE-Juel1)IBG-2-20101118
000829475 980__ $$aUNRESTRICTED