001     829481
005     20240619083537.0
024 7 _ |a 10.1103/PhysRevFluids.2.043301
|2 doi
024 7 _ |a 2128/14249
|2 Handle
024 7 _ |a WOS:000403686400001
|2 WOS
024 7 _ |a altmetric:19783307
|2 altmetric
037 _ _ |a FZJ-2017-03174
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Dhont, Jan K.G.
|0 P:(DE-Juel1)130616
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Nonuniform flow in soft glasses of colloidal rods
260 _ _ |a College Park, MD
|c 2017
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1493121738_8494
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Despite our reasonably advanced understanding of the dynamics and flow of glasses made of spherical colloids, the role of shape, i.e., the respective behavior of glasses formed by rodlike, particles is virtually unexplored. Recently, long, thin and highly charged rods (fd-virus particles) were found to vitrify in aqueous suspensions at low ionic strength [Phys. Rev. Lett. 110, 015901 (2013)]. The glass transition of these long-ranged repulsive rods occurs at a concentration far above the isotropic-nematic coexistence region and is characterized by the unique arrest of both the dynamics of domains that constitute the chiral-nematic orientational texture, as well as individual rods inside the domains. Hence, two relevant length scales exist: the domain size of a few hundreds of microns, and the rod-cage size of a few microns, inside the domains. We show that the unique dual dynamic arrest and the existing of two widely separated length scales imparts an unprecedented, highly heterogeneous flow behavior with three distinct signatures. Beyond a weak stress plateau at very small shear rates that characterizes the glass, the kinetic arrest of the domain dynamics gives rise to internal fracture, as a result of domain-domain interactions, as well as wall partial slip. It is shown that, on increasing the shear rate, the fractured plug flow changes to a shear-banded flow profile due to the stress response of the kinetically arrested aligned rods within the domains. Shear-gradient banding occurs due to the strong thinning of the uniform chiral-nematic phase within the domains, i.e., complying with the classic shear-banding scenario, giving rise to a stress plateau in the flow curve. Finally, a linear (uniform) velocity profile is found at the highest shear rates. Vorticity banding is also observed at intermediate and high shear rates. These results point to the crucial role of particle shape in tailoring the flow properties of dense colloidal suspensions. Moreover, they strongly support the argument that the origin of shear banding in soft-particle glasses with long-ranged repulsive interactions is fundamentally different from that of hard-particle glasses with short-ranged repulsive interactions.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a IHRS-BioSoft - International Helmholtz Research School of Biophysics and Soft Matter (IHRS-BioSoft-20061101)
|0 G:(DE-Juel1)IHRS-BioSoft-20061101
|c IHRS-BioSoft-20061101
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kang, K.
|0 P:(DE-Juel1)130749
|b 1
|u fzj
700 1 _ |a Kriegs, H.
|0 P:(DE-Juel1)130773
|b 2
|u fzj
700 1 _ |a Danko, O.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Marakis, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Vlassopoulos, D.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1103/PhysRevFluids.2.043301
|g Vol. 2, no. 4, p. 043301
|0 PERI:(DE-600)2868596-9
|n 4
|p 043301
|t Physical review fluids
|v 2
|y 2017
|x 2469-990X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/829481/files/PRF-Dhont.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/829481/files/PhysRevFluids.2.043301.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/829481/files/PRF-Dhont.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/829481/files/PRF-Dhont.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/829481/files/PRF-Dhont.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/829481/files/PRF-Dhont.jpg?subformat=icon-640
856 4 _ |u https://juser.fz-juelich.de/record/829481/files/PhysRevFluids.2.043301.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829481/files/PhysRevFluids.2.043301.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829481/files/PhysRevFluids.2.043301.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829481/files/PhysRevFluids.2.043301.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829481/files/PhysRevFluids.2.043301.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:829481
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130616
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130749
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130773
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21