000829533 001__ 829533
000829533 005__ 20250129094155.0
000829533 0247_ $$2doi$$a10.1103/PhysRevB.95.134427
000829533 0247_ $$2ISSN$$a0163-1829
000829533 0247_ $$2ISSN$$a0556-2805
000829533 0247_ $$2ISSN$$a1094-1622
000829533 0247_ $$2ISSN$$a1095-3795
000829533 0247_ $$2ISSN$$a1098-0121
000829533 0247_ $$2ISSN$$a1550-235X
000829533 0247_ $$2ISSN$$a2469-9950
000829533 0247_ $$2ISSN$$a2469-9969
000829533 0247_ $$2Handle$$a2128/14256
000829533 0247_ $$2WOS$$aWOS:000399789000004
000829533 0247_ $$2altmetric$$aaltmetric:16415811
000829533 037__ $$aFZJ-2017-03218
000829533 082__ $$a530
000829533 1001_ $$0P:(DE-Juel1)151305$$aSun, X.$$b0$$ufzj
000829533 245__ $$aMagnetism of monomer MnO and heterodimer FePt@MnO nanoparticles
000829533 260__ $$aWoodbury, NY$$bInst.$$c2017
000829533 3367_ $$2DRIVER$$aarticle
000829533 3367_ $$2DataCite$$aOutput Types/Journal article
000829533 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522227241_32430
000829533 3367_ $$2BibTeX$$aARTICLE
000829533 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829533 3367_ $$00$$2EndNote$$aJournal Article
000829533 520__ $$aWe report about the magnetic properties of antiferromagnetic (AF) MnO nanoparticles (NPs) with different sizes (6–19 nm). Using a combination of polarized neutron scattering and magnetometry, we were able to resolve previously observed peculiarities. Magnetometry, on the one hand, reveals a peak in the zero-field-cooled (ZFC) magnetization curves at low temperatures (∼25 K) but no feature around the Néel temperature at 118 K. On the other hand, polarized neutron scattering shows the expected behavior of the AF order parameter vanishing around 118 K. Moreover, hysteresis curves measured at various temperatures reveal an exchange-bias effect, indicating a coupling of an AF core to a ferromagnetic (FM)-like shell. ZFC data measured at various fields exclude a purely superparamagnetic (SPM) scenario. We conclude that the magnetic behavior of MnO particles can be explained by a superposition of SPM-like thermal fluctuations of the AF-Néel vector inside the AF core and a magnetic coupling to a ferrimagnetic Mn2O3 or Mn3O4 shell. In addition, we have studied heterodimer (“Janus”) particles, where a FM FePt particle is attached to the AF MnO particle. Via the exchange-bias effect, the magnetic moment of the FePt subunit is stabilized by the MnO.
000829533 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000829533 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000829533 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000829533 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000829533 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000829533 542__ $$2Crossref$$i2017-04-18$$uhttp://link.aps.org/licenses/aps-default-license
000829533 588__ $$aDataset connected to CrossRef
000829533 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000829533 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000829533 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
000829533 7001_ $$0P:(DE-Juel1)144041$$aKlapper, A.$$b1
000829533 7001_ $$0P:(DE-Juel1)130991$$aSu, Y.$$b2$$ufzj
000829533 7001_ $$0P:(DE-HGF)0$$aNemkovski, K.$$b3
000829533 7001_ $$0P:(DE-HGF)0$$aWildes, A.$$b4
000829533 7001_ $$0P:(DE-HGF)0$$aBauer, H.$$b5
000829533 7001_ $$0P:(DE-HGF)0$$aKöhler, O.$$b6
000829533 7001_ $$0P:(DE-HGF)0$$aSchilmann, A.$$b7
000829533 7001_ $$0P:(DE-HGF)0$$aTremel, W.$$b8
000829533 7001_ $$0P:(DE-Juel1)145895$$aPetracic, O.$$b9$$ufzj
000829533 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Th.$$b10$$ufzj
000829533 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.95.134427$$bAmerican Physical Society (APS)$$d2017-04-18$$n13$$p134427$$tPhysical Review B$$v95$$x2469-9950$$y2017
000829533 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.95.134427$$gVol. 95, no. 13, p. 134427$$n13$$p134427$$tPhysical review / B$$v95$$x2469-9950$$y2017
000829533 8564_ $$uhttps://juser.fz-juelich.de/record/829533/files/PhysRevB.95.134427.pdf$$yOpenAccess
000829533 8564_ $$uhttps://juser.fz-juelich.de/record/829533/files/PhysRevB.95.134427.gif?subformat=icon$$xicon$$yOpenAccess
000829533 8564_ $$uhttps://juser.fz-juelich.de/record/829533/files/PhysRevB.95.134427.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000829533 8564_ $$uhttps://juser.fz-juelich.de/record/829533/files/PhysRevB.95.134427.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000829533 8564_ $$uhttps://juser.fz-juelich.de/record/829533/files/PhysRevB.95.134427.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000829533 8564_ $$uhttps://juser.fz-juelich.de/record/829533/files/PhysRevB.95.134427.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829533 909CO $$ooai:juser.fz-juelich.de:829533$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000829533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151305$$aForschungszentrum Jülich$$b0$$kFZJ
000829533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b2$$kFZJ
000829533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145895$$aForschungszentrum Jülich$$b9$$kFZJ
000829533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b10$$kFZJ
000829533 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000829533 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000829533 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000829533 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000829533 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000829533 9141_ $$y2017
000829533 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829533 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829533 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000829533 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000829533 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829533 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829533 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829533 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829533 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829533 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829533 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829533 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829533 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829533 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000829533 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000829533 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000829533 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x3
000829533 9801_ $$aFullTexts
000829533 980__ $$ajournal
000829533 980__ $$aVDB
000829533 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000829533 980__ $$aI:(DE-Juel1)PGI-4-20110106
000829533 980__ $$aI:(DE-82)080009_20140620
000829533 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000829533 980__ $$aUNRESTRICTED
000829533 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.200501464
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1023/A:1011497813424
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1155/2013/952540
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3727/38/12/R01
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3727/35/6/201
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/14/1/013025
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.104433
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl060528n
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.132409
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.224402
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2005.08.004
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/19/18/185702
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2207809
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl200126v
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c3nr33282a
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C6NR03776C
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.83.333
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2010.06.019
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.064423
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.214418
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.5783
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.224416
000829533 999C5 $$1J. L. Dormann$$2Crossref$$oJ. L. Dormann Advances in Chemical Physics 1997$$tAdvances in Chemical Physics$$y1997
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2185850
000829533 999C5 $$1J. A. Mydosh$$2Crossref$$oJ. A. Mydosh Spin Glasses: An Experimental Introduction 1993$$tSpin Glasses: An Experimental Introduction$$y1993
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2005.10.061
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.spmi.2010.01.009
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.134424
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.012405
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm2030685
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0304-8853(98)00266-2
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0304-8853(99)00453-9
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm900663t
000829533 999C5 $$1Y. Su$$2Crossref$$oY. Su 2015$$y2015
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4526(00)00858-9
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889808039162
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pssa.2211350204
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/211/1/012026
000829533 999C5 $$1S. Bedanta$$2Crossref$$oS. Bedanta Handbook of Magnetic Materials 2015$$tHandbook of Magnetic Materials$$y2015
000829533 999C5 $$1F. C. Montenegro$$2Crossref$$oF. C. Montenegro 1991$$y1991
000829533 999C5 $$1S. Blundell$$2Crossref$$oS. Blundell Magnetism in Condensed Matter 2001$$tMagnetism in Condensed Matter$$y2001
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.394
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.024403
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.247201
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.224429
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C6TB02078J
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/12/13/316
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.63.024410
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3311611
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.097206
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2817481
000829533 999C5 $$1P. Scherrer$$2Crossref$$oP. Scherrer 1918$$y1918
000829533 999C5 $$2Crossref$$o43rd IFF Spring School 2012: Scattering Methods for Condensed Matter Research: Towards Novel Applications at Future Sources 2012$$t43rd IFF Spring School 2012: Scattering Methods for Condensed Matter Research: Towards Novel Applications at Future Sources$$y2012
000829533 999C5 $$1S. H. Kim$$2Crossref$$oS. H. Kim 2005$$y2005
000829533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.287.5460.1989