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Predictions about upcoming events influence how we perceive and respond to our environment. There is increasing evidence that

predictions may be generated based upon previous observations following Bayesian principles, but little is known about the underlying

cortical mechanisms and their specificity for different cognitive subsystems. The present study aimed at identifying common and distinct

neural signatures of predictive processing in the spatial attentional and motor intentional system. Twenty-three female and male healthy

human volunteers performed two probabilistic cueing tasks with either spatial or motor cues while lying in the fMRI scanner. In these

tasks, the percentage of cue validity changed unpredictably over time. Trialwise estimates of cue predictability were derived from a

Bayesian observer model of behavioral responses. These estimates were included as parametric regressors for analyzing the BOLD time

series. Parametric effects of cue predictability in valid and invalid trials were considered to reflect belief updating by precision-weighted

prediction errors. The brain areas exhibiting predictability-dependent effects dissociated between the spatial attention and motor inten-

tion task, with the right temporoparietal cortex being involved during spatial attention and the left angular gyrus and anterior cingulate

cortex during motor intention. Connectivity analyses revealed that all three areas showed predictability-dependent coupling with the

right hippocampus. These results suggest that precision-weighted prediction errors of stimulus locations and motor responses are

encoded in distinct brain regions, but that crosstalk with the hippocampus may be necessary to integrate new trialwise outcomes in both

cognitive systems.
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Introduction
How we perceive and respond to our environment does not de-
pend solely on the sensory input that we receive, but also on predic-

tions that we make about upcoming events or motor acts. Paradigms
in which cues predict the location of a stimulus (Posner et al., 1980)
or the motor response to a target (Rushworth et al., 1997) are used to
study these effects. Response times (RTs) are accelerated if the cue is
valid, whereas slower RTs are observed in invalid trials when the
prediction is violated and reorienting of attention or reprogram-
ming of the motor response become necessary. A ventral fronto-
parietal network including the right temporoparietal junction
(TPJ) exhibits enhanced neural activity for spatially invalid (com-
pared with valid) targets (Corbetta et al., 2008). Repetitive transcra-
nial magnetic stimulation applied over the left supramarginal gyrus
disrupts the performance in invalidly cued motor (but not spatial)
trials (Rushworth et al., 2001a) regardless of the subjects’ responding
hand or verbal strategies (Rushworth et al., 2001b).
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Significance Statement

The brain is able to infer the environments’ statistical structure and responds strongly to expectancy violations. In the spatial

attentional domain, it has been shown that parts of the attentional networks are sensitive to the predictability of stimuli. It remains

unknown, however, whether these effects are ubiquitous or if they are specific for different cognitive systems. The present study

compared the influence of model-derived cue predictability on brain activity in the spatial attentional and motor intentional

system. We identified areas with distinct predictability-dependent activation for spatial attention and motor intention, but also

common connectivity changes of these regions with the hippocampus. These findings provide novel insights into the generality

and specificity of predictive processing signatures in the human brain.
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Spatial reorienting is not an all-or-none phenomenon because
RTs in valid and invalid trials are affected differentially by the pre-
dictability of the cue (i.e., the probability with which the cue correctly
predicts the target location in a given trial determined by the propor-
tion of valid and invalid trials in a trial sequence). While RTs in valid
trials decrease, RTs in invalid trials increase with higher cue predict-
ability, resulting in bigger validity effects (Fig. 1A).

Moreover, there is evidence that subjects infer the trialwise
cue predictability on the basis of past trials and that this estima-
tion can be described by a hierarchical Gaussian filter (a special
case of generalized predictive coding or Bayesian filtering) (Ma-
thys et al., 2011; Vossel et al., 2014a). This model estimates hid-
den states (in our specific case: beliefs about cue predictability
and its stability over time) and this estimation can be framed in
terms of propagating precision-weighted prediction errors from
one hierarchical level to the next. Here, beliefs about cue predict-
ability are represented on the lower level of the model and are
influenced by beliefs about the stability (volatility) of cue predict-
ability represented on a higher level and also by subject-specific
parameters. Although the higher-level volatility is of major rele-
vance for the flexibility of the model (Behrens et al., 2007; den
Ouden et al., 2010), the focus of this study concerned the effects
of (lower-level) cue predictability on behavior and BOLD re-
sponses. Here, as for RTs, we expected differential effects in valid
and invalid trials; that is, increased BOLD responses with higher
cue predictability in invalid trials, but decreased BOLD responses
with higher predictability in valid trials (Fig. 1B).

Using a spatial cueing paradigm with saccadic responses, ac-
tivity patterns as shown in Figure 1B have been observed in the
right frontal eye field, TPJ, and putamen (Vossel et al., 2015).
However, because saccade preparation is inherently linked to co-
vert shifts of spatial attention (Deubel, 2008), this previous work
cannot differentiate between attentional and motor-intentional
effects.

In this study, we used two novel cueing tasks to compare
directly the effects of cue predictability in the spatial attentional
and motor intentional system. The cues either guided spatial at-
tention or signaled the upcoming motor response to the target.
The proportion of valid and invalid trials changed unpredictably
over time and the subjects’ trialwise beliefs about cue predictabil-
ity were derived from a hierarchical Gaussian filter and were
included as parametric regressors for analyzing the BOLD time
series. This allowed us to test whether the neural signatures of
predictive coding share common mechanisms or if there are dif-
ferent physiological implementations for spatial attention and
motor intention. We expected a greater predictability-dependent
involvement of left parietal areas in the motor intention task. For
spatial attention, we expected a modulation of right TPJ activity
(Vossel et al., 2015; Dombert et al., 2016a). In addition, we per-
formed explorative connectivity analyses to test for convergent
predictability-dependent coupling patterns in the two functional
domains.

Materials and Methods
Participants. Initially, 34 healthy participants gave written informed con-
sent to take part in the study. Eleven subjects had to be excluded due to
head movement �3 mm (n � 4) or technical problems during scanning
(n � 7). Therefore, data from 23 subjects (13 males, 10 females; age range
18 –36; mean age 26 years) were analyzed. All subjects were right-handed,
as assessed by the Edinburgh Handedness Inventory (Oldfield, 1971) and
had normal or corrected-to-normal vision and no history of neurological
or psychiatric disorders. The study was approved by the ethics committee
of the German Psychological Society and was performed in accordance
with the Code of Ethics of the World Medical Association (Declaration of
Helsinki).

Stimuli and experimental paradigm. The tasks were presented on a
screen (spatial resolution 1024 � 768, 60 Hz sampling rate) mounted at
the back of the magnet bore. A mirror system attached to the head coil
enabled the subjects to see the display at a viewing distance of 240 cm.

Figure 1. Schematical illustration of the hypothesized effects of cue predictability. A, Illustration of the expected differential effects of cue predictability on RTs in valid and invalid trials.

B, Computational anatomy that can be inferred from the fMRI results. In predictive coding formulations of hierarchical neuronal processing, precision-weighted prediction errors may be encoded

neurally. Belief updating in the hierarchical Gaussian filter model rests on prediction errors in the different levels that are weighted by (level-specific) precision terms. In the present study, we focused

on this process at the lower level of the model; that is, on the observation of valid and invalid trials in relation to the expected cue predictability. Here, BOLD amplitudes should be attenuated with

higher cue predictability in valid trials, but increase with higher cue predictability in invalid trials (when the prediction is violated). Such effects were identified by including model-derived cue

predictability as a parametric modulator for valid and invalid trials in the fMRI analysis and by subsequently contrasting the parametric effects between the two trial types with a planned invalid �

valid contrast.
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Participants performed two versions of an adapted cueing paradigm
(Egner et al., 2008). They were asked to detect a target stimulus (the
diamond with one corner missing) in a visual search display and to
indicate by button press whether the upper or lower corner of the target
was missing. For their motor response, subjects were provided with a
button box with two neighboring response buttons that they pressed with
their right index finger or their right middle finger (Fig. 2).

The search display consisted of four diamonds that were positioned in
the corners of an imaginary rectangle centered on the fixation diamond
(4.8° eccentric in each visual field; Fig. 2). The different colors of the
stimuli in the search display were irrelevant for the present task, but were
introduced for reasons of comparability with previous research (Dombert et
al., 2016a).

The search display was always preceded by a cue stimulus that was
shown for 400 ms. In the spatial attention task, the cue was an arrowhead
appearing at the central fixation diamond, indicating the most likely
hemifield in which the target would appear (Fig. 2). In the motor inten-
tion task, the cue stimulus contained an illustration of the two response
buttons for the right index and middle finger (Fig. 2). The white button
indicated the most likely button press response required by the target.
Therefore, in the example depicted in Figure 2, the subjects prepared a
button press with the index finger (valid condition) or a button press
with the middle finger (invalid condition). In other words, the target
always determined the motor response, but the cue biased the motor
preparation toward one or the other response. The response mapping
(upper/lower corner missing ¡ index/middle finger) was counterbal-
anced across subjects. Subjects needed to respond to the target within a
period of 1500 ms from target onset. The tasks with motor or spatial cues
were presented in two different runs, with counterbalanced order be-
tween subjects.

Throughout the experiment, participants were asked to maintain cen-
tral fixation and to respond as quickly as possible to the target. Moreover,
they were instructed to use the cues according to how much they
“trusted” them to speed up RTs to the target. The percentage of cue
validity (%CV) changed between levels of �50%, 70%, and 90% valid
trials (cf. Fig. 4B). Participants were not aware of the different levels of
%CV or when they would change; they were only informed that varia-
tions in %CV would occur over the course of the experiment. In the fMRI
experiment, 284 trials were shown in each cueing version. In accordance
with standard procedures in computational studies of trialwise inference,
target stimuli and trial sequence were identical between the two cueing
versions. Each %CV block consisted of 22 or 32 trials. This block length
was chosen to provide participants with sufficient trials to learn the hid-
den statistical context. Each block contained an equal number of left and
right upper and lower targets counterbalanced across valid and invalid
cues. Furthermore, 84 null events (only displaying the fixation diamond)
were randomly intermixed to jitter trial onsets. Halfway through each
version, a 1 min break was introduced by displaying the word “Pause”.
The total duration of the fMRI experiment (both runs) amounted to 34
min. To familiarize the subjects with the task, fixation, and manual re-
sponses, we included a prior practice session in the experiment. This
practice took place on the same day or the previous day of the fMRI
session and consisted of one run with constant %CV of 80% and one run
with changes in %CV.

Statistical analysis of behavioral data. Classical inference was first per-
formed to investigate whether the different levels of experimentally ma-
nipulated cue predictability (%CV) significantly affected RTs and
whether these effects differed for spatial attention and motor intention.
Incorrect trials, misses, anticipations, and responses deviating �2 SDs
from the individual subject’s mean RT were excluded from the analysis.

Figure 2. Illustration of the different experimental conditions for the two different tasks. The behaviorally relevant target stimulus was a diamond with a missing corner, which was embedded

in a visual search display. The subjects were asked to indicate by button press of one of two adjacent response buttons (for the right index or middle finger) whether the upper or lower corner of the

target diamond was missing. The allocation of upper/lower corner to index/middle finger was counterbalanced across subjects. This example shows a configuration in which the subjects should

respond with the index finger for diamonds in which the upper corner is missing. The target search display was always preceded by a cue stimulus. In the spatial attention task, this cue indicated the

most likely hemifield in which the target would be located (with variable levels of cue predictability). In the motor intention task, the cue indicated the most likely button press response required by

the target. This cue consisted of two squares representing the two response buttons. The white button signaled the most likely button press response (with variable levels of cue predictability). Note

that the spatial attention task and the motor intention task were presented in different runs.
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Mean RTs from valid and invalid trials for each subject, %CV condition
and task entered a 2 (validity: valid/invalid) � 3 (%CV: 50/70/90%) � 2
(task: spatial attention/motor intention) within-subject ANOVA. Re-
sults of this analysis are reported after a Greenhouse–Geisser correction
at a significance level of p � 0.05. Based on evidence for a linear relation-
ship between validity effects (RT invalid � RT valid) and %CV (Egner et
al., 2008; Vossel et al., 2014a; Dombert et al., 2016b; Dombert et al.,
2016a), we report linear contrasts for the effects of %CV. We expected to
find a significant interaction between validity and %CV, with decreasing
RTs in valid and increasing RTs in invalid trials (i.e., bigger validity
effects) with higher %CV. The same within-subjects ANOVA was per-
formed on accuracy (as the percentage of correct responses).

In a second step, a Bayesian observer model (hierarchical Gaussian
filter) was used to estimate trial-by-trial beliefs about cue predictability
(i.e., the probability that the cue will be valid) based on the single-trial
RTs for each participant (Mathys et al., 2011; Vossel et al., 2014a). The
parameters that can be derived from this model also allow for a quanti-
fication of individual differences in the trialwise estimation of cue pre-
dictability. The model incorporates a perceptual and a response model
(Fig. 3). While the perceptual model describes updating of beliefs based
on the cue–target outcomes (i.e., observations), the response model is
used to derive responses (i.e., RTs) based on these beliefs. Details about
the derivation of the equations of the perceptual model are provided in
Mathys et al. (2011). In what follows, we describe the model parameters
as relevant for the present study.

The perceptual model consists of hierarchically coupled Gaussian ran-
dom walks that enable a flexible control of updating of the beliefs about
cue predictability in each trial in relation to beliefs about volatility and
subject-specific parameters. It comprises three states denoted by x (Fig.

3). The state x1
�t	 represents the environmental state in each trial, which, in

the present paradigm, consisted of either a validly or invalidly cued target

(with x1
�t	 � 1 for valid and x1

�t	 � 0 for invalid trials). The probability

distribution of the trial being valid (i.e., of x1
�t	 � 1) is a Bernoulli distri-

bution governed by the next higher state x2
�t	. Therefore, x2

�t	 is a single real

number that determines the probability of x1
�t	 being 1 (valid) or 0 (in-

valid) through a sigmoid (softmax) transformation. x2
�t	 changes from

trial to trial as a Gaussian random walk. Its value depends on the value

from the previous trial t � 1 and the magnitude of its change (i.e., how

fast x2
�t	 changes after new observations) is determined by two quantities:

x3
�t	 (the state of the next upper level of the hierarchy) and a fixed, subject-

specific updating parameter �. The third state x3
�t	 represents the belief

about the stability of cue predictability and also changes as a Gaussian
random walk, with the step size being determined by a second subject-
specific parameter �. The values of the subject-specific parameters � and
� are estimated from the individual RT data (see below).

This allowed us to estimate subject-specific beliefs about trial-by-trial
variations in probabilistic contingencies. To infer these subject-specific
beliefs from the RTs, the perceptual model needs to be inverted; this
yields the posterior densities over the three hidden states x�t	. In the
following, the mean of the subject’s posterior belief will be denoted by
��t	. We use the hat symbol (^) to denote predictions before the obser-

vation of x1
�t	 on a given trial t. Therefore, the relevant trialwise quantity

for the present study was �̂1
�t	; that is, the posterior belief that the cue will

be valid before observation of the outcome of trial t (or, in other words,
the estimated probability that the target will appear at the cued location

or will require the cued motor response in the upcoming trial). �̂1
�t	 is

derived from a sigmoid transformation of �2
�t�1	 as follows:

�̂1
�t	 � s��2

�t�1		

As described in detail in Mathys et al. (2011), variational model inversion
under a mean field approximation yields simple analytical update equa-
tions, in which belief updating rests on precision-weighted prediction
errors. These update equations provide approximately Bayes-optimal

rules for the trial-by-trial updating of the beliefs about �2
�t	 and �3

�t	. Note
that this is an individualized approximate Bayes optimality in reference
to the subject-specific values for the updating parameters � and �.

A response model was used to map the derived posterior beliefs to the
observed RTs. In previous work using a saccadic response task with spa-
tial cueing, RTs could most plausibly be explained by the trialwise
precision of the prediction at the first level of the perceptual model
(Vossel et al., 2014a; Vossel et al., 2014b). However, because we used
a novel paradigm with manual responses in this study, we again com-
pared the three alternative response models considered in this previous

Figure 3. Depiction of the hierarchical Bayesian model (Gaussian filter) for belief updating about cue predictability. The perceptual model (shown on gray background) illustrates the three states

(x1, x2, x3). The higher levels are influenced by constant parameters � and �, which affect trialwise changes on the respective level. Circles represent constants and diamonds represent quantities

that change over time (trials). Hexagons, like diamonds, represent quantities that change in time but that additionally depend on their previous state in time in a Markovian fashion. The response

model parameters �1 and �2 quantify the intercept and the slope of the linear function of RT and cue predictability �̂1
�t	.
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work. Variational Bayesian estimation was used to derive the model pa-
rameters based on RTs, as implemented in the HGF toolbox (http://
www.translationalneuromodeling.org/tapas/) running on MATLAB
2012b (The MathWorks). The relative plausibility of the previous re-
sponse models was compared using a random-effects Bayesian model
selection (Stephan et al., 2009). This analysis revealed that the model in

which RTs were governed directly by the estimated cue predictability �̂1
�t	

described the data most plausibly. More specifically, this response model
describes trialwise RTs as a linear function of the estimated cue predict-

ability �̂1
�t	. The two response model parameters �1 and �2 parameterize

the intercept and the slope of the linear function:

RT�t	 � � �1v � �2v�̂1
�t	 for x1

�t	 � 1 �i.e., valid trial	

�1i � �2i�̂1
�t	 for x1

�t	 � 0 �i.e., invalid trial)

Again, like the subject-specific parameters � and � of the perceptual
model, these response model parameters were estimated for each subject
from the individual RT data.

Eye movement recording and analysis. Eye movement data were ac-
quired using an EyeLink 1000 MR-compatible eye-tracker system (SR
Research) at a sampling rate of 500 Hz. Before the task, a 9 or 5 point
calibration was performed, followed by a validation to ensure that errors
were �1°. Data were processed using the ILAB toolbox (Gitelman, 2002)
in MATLAB (The MathWorks). The amount of time spent within a
fixation zone of 1.5° from the central fixation point was analyzed for the
time between cue and target appearance, as well as for the time period
between target and response. Percentage of fixation time within the cen-
tral ROI in the cue–target period was compared between spatial and
motor cues with a paired t test. Fixation between target appearance and
response was analyzed with a 2 (task: spatial attention/motor inten-
tion) � 2 (validity: valid/invalid) within-subject ANOVA.

MRI data acquisition. Using a 3 T MRI system (Trio; Siemens), T2*-
weighted EPI images with BOLD contrast were acquired with a repetition
time of 2.2 s and an echo time of 30 ms. Two functional runs were
acquired consisting of 462 EPI volumes for each run (i.e., for each task).
Each volume consisted of 36 axial slices with interleaved slice acquisition.
The field of view was 200 mm using a 64 � 64 image matrix, which
resulted in a voxel size of 3.1 � 3.1 � 3.0 mm 3. The first five volumes
were discarded from the analysis to allow for T1 equilibration effects. The
remaining 2 � 457 volumes were analyzed using the Statistical Para-
metric Mapping software SPM12 (Wellcome Department of Imaging
Neuroscience, London; Friston et al., 1995; http://www.fil.ion.ucl.ac.uk/
spm). Images were bias-corrected. Slice acquisition time differences were
corrected using sinc interpolation to the middle slice. During spatial
realignment, a mean EPI image was computed for each subject and spa-
tially normalized to the MNI template using the segmentation function.
Subsequently, the resulting transformation was applied to the individual
EPI volumes to translate the images into standard MNI space and resample
them into 2 � 2 � 2 mm3 voxels. Finally, the normalized images were
spatially smoothed using an 8 mm full-width half-maximum Gaussian
kernel.

Statistical analysis of imaging data. At the single-subject level, the spa-
tial attention and motor intention tasks were included as separate ses-
sions in a general linear model of the BOLD responses. For each session,
regressors of interest for left and right valid and invalid trials were de-
fined. The resulting stimulus functions were convolved with a canonical
hemodynamic response function (HRF) and its first (temporal) deriva-

tive. For each task regressor, cue predictability �̂1
�t	 as derived from the

single-subject computational modeling was included as a parametric
modulator. Note that parametric modulations in SPM are used to test
whether the trialwise amplitude of the BOLD response in an experimen-
tal condition varies with a continuous variable of interest. RTs were
added as a second (orthogonalized) parametric regressor to capture re-

sidual variability that was not explained by cue predictability �̂1
�t	. Error

trials (anticipations, misses, and incorrect responses) and outliers (RTs
above or below 2 SDs from the subject’s mean) were discarded from the
effects of interest and modeled separately. In addition, the rest period and
12 movement parameters of the (rigid body) realignment (six motion
parameters and their power of two;Friston et al., 1996) were included in

the design matrices as nuisance regressors. Data were high-pass filtered at

1/128 Hz.

As shown in Figure 1, the aim of the current study was to identify and

compare brain areas in which BOLD responses are modulated differen-

tially by cue predictability in valid and invalid trials, with potentially

negative parametric effects for valid trials (i.e., smaller BOLD responses

with higher predictability) and positive parametric effects for invalid

trials (i.e., higher BOLD responses with higher cue predictability). For

this reason, we focused on planned comparisons of the parametric re-

gressors of invalid and valid trials (t-contrasts of invalid � valid) in each

task and compared these between the two different tasks using interaction
contrasts. These interaction contrasts between validity (valid/invalid) and
task (spatial attention/motor intention) thus isolate domain-specific corre-
lates of predictive processing in one or the other task.

Because no significant interaction with hemifield was observed in the
analysis of probability-independent effects (contrast of invalid � valid
trials for the HRF regressors) (data not shown) and to increase the trial
numbers for the parametric modulation effects, the analysis of cue pre-
dictability was based on a first-level design matrix with only two regres-
sors for all valid and all invalid trials in each task, respectively. At the
group level, the first-level contrast images for variations of BOLD ampli-

tudes with cue predictability �̂1
�t	 were analyzed with a 2 (task: spatial

attention/motor intention) � 2 (validity: valid/invalid) within-subject
random-effects ANOVA. As explained above, differential predictability-
dependent effects for spatial attention and motor intention were inves-
tigated with interaction contrasts (spatial attention [invalid � valid] �

motor intention [invalid � valid]; motor intention [invalid � valid] �

spatial attention [invalid � valid]). To ensure that the interaction effects
were indeed due to significantly higher effects in invalid as in valid trials
in the respective task version (and not only due to a reversed effect in the
other task), the interaction contrasts were inclusively masked by the
invalid � valid contrast of one task with a mask threshold of p � 0.01
(uncorrected). We also tested for a common predictability-dependent
effects in the two cueing tasks using a conjunction analysis of the two
invalid � valid contrasts for the two tasks (SPM conjunction null hy-
pothesis: spatial attention [invalid � valid] � motor intention [invalid �

valid]). All reported activations were significant at p � 0.05 familywise
error (FWE), corrected at the cluster level with a voxel-level cutoff of p �

0.001. Because we had a strong a priori hypothesis that the right TPJ
would exhibit predictability-dependent effects (Vossel et al., 2015;
Dombert et al., 2016a), we used small volume correction in the spatial
attention [invalid � valid] � motor intention [invalid � valid] contrast
using a 12 mm sphere centered upon the coordinates from Vossel et al.
(2015) [MNI coordinates (46 �46 6)]. Results from this ROI analysis are
reported at a significance level of p � 0.05 FWE, corrected for the search
volume. Brain regions were defined anatomically using the SPM Anat-
omy Toolbox (Eickhoff et al., 2005) for those regions that have been
cytoarchitectonically mapped and the Automated Anatomical Labeling
atlas (Tzourio-Mazoyer et al., 2002) for the remaining regions.

Psychophysiological interaction (PPI) analyses. Because no common
activation patterns were revealed by the conjunction analysis of probability-
dependent effects in the two domains (i.e., spatial attention and motor
intention), we used PPI analyses (Friston et al., 1997) to test for poten-
tially converging cue-predictability-dependent connectivity patterns of
the different seed regions derived from the former analysis [right TPJ for
spatial attention; left angular gyrus (ANG) and anterior cingulate cortex
(ACC) for motor intention]. PPIs explain the responses in cortical areas
in terms of an interaction between the influence of another area and an
experimental manipulation. This allows for a whole-brain analysis of
context-dependent coupling with one predefined seed region.

For each seed region, time series were extracted from the nearest local
maximum within a radius of 8 mm from the group maxima. The first
eigenvariate was then computed across all suprathreshold voxels within 4
mm of the subject-specific maxima. The resulting BOLD time series were
adjusted for effects of no interest (e.g., rest periods, error trials,and move-
ment parameters) and deconvolved to generate time series of the neuro-
nal signal. These time series were used to construct the first-level design
matrices for the PPIs.
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Our PPI analysis was, necessarily, more complicated than a standard
PPI analysis. This is because a standard PPI analysis tests for a single
interaction between a physiological variable and a psychological variable.
However, in our case, the psychological variable of interest is itself an
interaction: an interaction between validity and predictability. This
means that we were effectively testing for a three-way interaction be-
tween a physiological and two psychological variables. In turn, this re-
quired us to model, not only the main effects of the psychological and
physiological variables, but also two-way interactions between the phys-
iological variable and the psychological variables validity (valid/invalid)
and model-derived cue predictability. The resulting explanatory variables
therefore contain multiple PPI terms, rendering it a generalized PPI.
Analyses were performed with the Generalized PPI (gPPI) Toolbox
(McLaren et al., 2012).

In detail, the design matrices for the three separate PPI analyses at the
single-subject level contained nine experimental regressors: four regres-
sors for valid and invalid trials and their parametric modulation by
predictability; four PPI regressors for the interactions between the phys-
iological variable (i.e., the time series of the seed region) and valid trials,
invalid trials, and their parametric modulation by predictability; and one
regressor for the physiological variable. Model estimation was performed
and first-level contrast images were created for the PPI regressor of the

parametric modulator (cue predictability �̂1
�t	) in valid and invalid trials.

At the second (i.e., group) level, the first-level contrast images entered
a conjunction analysis of the invalid � valid contrast of each of the three
seed regions (right TPJ for spatial attention, left ANG and ACC for motor
intention). The “intermediate null hypothesis” in SPM was chosen to test
for a common effect in two or more contrasts. Again, reported activa-
tions were significant at p � 0.05 FWE, corrected at the cluster level with
a voxel-level cutoff of p � 0.001. This analysis identified areas where the
connectivity with two or more regions decreased with higher estimated
cue predictability in valid trials and in which connectivity increased with
higher estimated cue predictability in invalid trials.

Results
Behavioral data
Table 1 provides an overview of mean RTs and accuracy in the
different experimental conditions. Figure 4A depicts mean valid-
ity effects (RT invalid � RT valid) for both tasks in the three
experimentally manipulated %CV levels.

The 2 (task: spatial attention/motor intention) � 2 (validity:
valid/invalid) � 3 (%CV: 50/70/90) within-subject ANOVA on
individual mean RTs yielded a significant main effect of validity
(F(1,22) � 27.56, p � 0.001), reflecting generally slower responses
in invalid compared with valid trials. As expected, the validity �
%CV interaction effect was significant (linear trend: F(1,22) �
13.77, p � 0.001), indicating higher differences between invalid
and valid trials with higher %CV (Fig. 4A). There were no general

differences in RTs between both task versions (nonsignificant
main effect of task: F(1,22) � 1.45, p � 0.24). The same results were
observed when task order was included as a between-subject fac-
tor in the above ANOVA and task order did not interact with any
of the effects.

The same ANOVA was performed on percentage accuracy,
revealing only a main effect of validity (F(1,22) � 14.36, p �
0.001). Subjects were more accurate in valid than in invalid trials.
Again, this effect was not influenced by the order of task admin-
istration, nor did it interact with any of the other factors.

In a next step, trialwise estimates of cue predictability �̂1
�t	 were

derived from the hierarchical Gaussian filter. These estimates are
governed by the constant subject-specific parameters determin-
ing the step size of the random walks at the second (�) and third
level (�). Comparing these parameters between both task ver-
sions revealed no significant differences in any of the parameters.
In addition, the response model parameters �1v, �1i, �2v, and �2i,
quantifying the absolute level of RTs and the strength of the de-

pendency on �̂1
�t	 did not differ significantly between the two task

versions. There were no significant correlations between the
model parameters from the spatial attention and motor intention

tasks, over subjects. Figure 4B depicts �̂1
�t	 calculated on the basis

of the mean model parameters of the whole group. Figure 4C
shows observed valid and invalid RTs in relation to predicted

RTs for different values of model-derived cue predictability �̂1
�t	

(binned in 0.1 steps). A 2 � 4 � 2 within-subject ANOVA with

the factors validity (valid/invalid), cue predictability �̂1
�t	 (�0.55/

�0.65/�0.75/�0.85) and task (spatial attention/motor inten-
tion) revealed a main effect of validity (F(1,22) � 33.03, p � 0.001)

and, as expected, a significant validity � cue predictability �̂1
�t	

interaction (linear contrast: F(1,22) � 17.63, p � 0.001), showing
that the differences between RTs in invalid and valid trials in-

creased with higher values of �̂1
�t	. This was due to decreasing RTs

in valid and increasing RTs in invalid trials.
In sum, these analyses showed that RTs in the two cueing

paradigms followed the hypotheses from the predictive coding
framework. Moreover, analyses revealed that the dynamics of
the estimation of cue predictability were comparable between the
two tasks because there were no significant differences in the
subject-specific parameters of the hierarchical Gaussian filter.

Eye movement data
Data from five subjects had to be discarded due to poor tracking
inside the MR scanner. Nonetheless, eye movements were mon-
itored visually in these subjects on the camera screen. The re-
maining subjects fixated in (mean 
 SEM) 97.7 
 0.45% of the
motor and 97.5 
 0.59% of the spatial cueing task during the
cue-target period. Fixation performance did not differ between
the two tasks (t(17) � 0.73, p � 0.47). The 2 task (spatial attention/
motor intention) � 2 validity (valid/invalid) within-subject
ANOVA on the percentage fixation between target and response
showed no significant effect of task (F(1,17) � 0.3, p � 0.59) or
validity (F(1,17) � 0.02, p � 0.89) and no interaction of the two
factors (F(1,17) � 0.002, p � 0.96).

fMRI data
The purpose of this study was to compare the differential para-
metric modulation by cue predictability in invalid and valid trials
between the two tasks (in analogy to the differential behavioral
effects of cue predictability in valid and invalid trials). Common
activity patterns should be revealed by a conjunction analysis
(spatial attention [invalid � valid] � motor intention [invalid �

Table 1. Behavioral data

Task Validity

%CV

50% 70% 90%

Mean RTs, ms (
SEM)a

Spatial attention Valid 628.1 (
22.6) 629.6 (
21.8) 626.1 (
21.9)
Invalid 651.3 (
20.7) 657.8 (
24.5) 672.6 (
24.7)

Motor intention Valid 618.2 (
19.1) 622.7 (
18.8) 611.7 (
18.5)
Invalid 646.2 (
19.1) 653.6 (
21.7) 662.4 (
20.4)

Mean accuracy, % correct

responses (
SEM)b

Spatial attention Valid 91.2 (
1.2) 87.6 (
1.7) 88.7 (
0.9)
Invalid 85.0 (
2.0) 85.5 (
2.0) 84.0 (
2.0)

Motor intention Valid 89.6 (
1.4) 87.6 (
1.7) 89.5 (
1.2)
Invalid 85.5 (
1.3) 83.6 (
1.7) 83.4 (
1.8)

aMean RTs for spatial attention and motor intention separately for valid and invalid trials in the three different %CV
levels.
bMean accuracy in the different experimental tasks and conditions.
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valid]). However, this analysis did not yield any significant re-
sults, suggesting that there was no detectable overlap in the brain
areas mediating predictability-dependent processing in the spa-
tial attention and motor intention task.

Differential (i.e., domain-specific) activity patterns should be
reflected in the two interaction contrasts: spatial attention [in-
valid � valid] � motor intention [invalid � valid]; motor inten-
tion [invalid � valid] � spatial attention [invalid � valid]; each
masked with the simple contrast of invalid � valid in the respec-
tive task. The first interaction contrast revealed that there were no
whole-brain results reaching cluster-level significance for the spatial

attention � motor intention effect. However, a significant effect was
obtained in a ROI analysis of the right TPJ with a sphere centered on
the coordinates from Vossel et al. (2015) (pFWE-corrected for the
search volume) (x � 52, y � �56, z � 8; 10 voxel; t � 3.7). In this
region, there was a positive parametric modulation effect for in-
valid trials, with parameter estimates around zero for valid trials
(Fig. 5A). For the reverse interaction contrast, we found differen-
tial parametric modulation effects for invalid versus valid trials in
the left ANG (x � �38, y � �58, y � 42; 411 voxel; t � 5.22) and
the left ACC (x � �8, y � 36, z � 24; 156 voxel; t � 4.92), which
were stronger in the motor intention than in the spatial attention

Figure 4. Behavioral data. A, Validity effects (RT invalid � RT valid) for each %CV block in each task. Error bars indicate SEM. B, Trial-by-trial changes in cue predictability �̂1
�t	 (i.e., the subjects’

belief that the cue will be valid) in relation to the experimentally manipulated %CV over the 284 trials for the spatial attention and motor intention task, respectively. For this graph, �̂1
�t	 was

calculated on the basis of group average values of the model parameters, which did not differ between the two tasks. Note, however, that the profiles look different for each individual subject in each

task and that individual cue predictability values entered the fMRI analyses. C, Observed and predicted RTs in valid and invalid trials as a function of the trial-by-trial estimate of cue predictability �̂1
�t	

for both task versions (calculated on the basis of group average values of the model parameters). Error bars indicate SEM. Note that there was an insufficient number of trials for the invalid condition

in the lowest probability bin, so this data point is missing.

5340 • J. Neurosci., May 24, 2017 • 37(21):5334 –5344 Kuhns et al. • Attention, Intention, and Predictability



Figure 5. fMRI data: differential cue-predictability-dependent effects for spatial attention and motor intention. A, Results of the first planned interaction contrast (spatial attention [invalid �

valid] � motor intention [invalid � valid]): increasing BOLD responses in invalid trials and unmodulated BOLD responses in valid trials with higher values of model-derived cue predictability �̂1
�t	

in the right TPJ in the spatial attention task (blue) compared with the motor intention task (green). B, Results of the second planned interaction contrast (motor intention [invalid � valid] � spatial

attention [invalid � valid]): increasing BOLD responses in invalid trials and decreased or unmodulated BOLD responses with higher values of model-derived cue predictability �̂1
�t	 in valid trials in

the left ANG and left ACC in the motor intention task (green) compared with the spatial attention task (blue). L, Left hemisphere; R, right hemisphere.
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task. The parameter estimates for the parametric regressor cue

predictability �̂1
�t	 were positive for invalid trials, reflecting an

increased response with higher estimated probability that the cue
would be valid (Fig. 5B). In contrast, parameter estimates were
zero or negative in valid trials, reflecting no or a decreasing mod-
ulation with higher estimated cue predictability.

PPI results
We used PPI analyses to investigate whether there was a common
brain region exhibiting predictability-dependent coupling changes
with right TPJ during spatial attention and left ANG or ACC
during motor intention, respectively. Figure 6 shows the results
of the conjunction analysis testing for significant PPI effects in at
least two of the three contrasts capturing the effects of validity-
and predictability-dependent coupling with the three seeds. The
only region in which a significant effect at the cluster level could
be observed was located in the anterior part of the right hip-
pocampus (x � 30, y � �24, z � �4; 131 voxels; t � 2.85). Post
hoc analyses of the 	 estimates of the parametric PPI regressors
revealed that a significant difference between cue-predictability-
dependent coupling in valid and invalid trials was present for all
three seed regions (two-sided paired t tests: TPJ seed: t(22) �
�3.4, p � 0.003; ANG seed: t(22) � �3.8, p � 0.001; ACC seed:
t(22) � �3.5, p � 0.002; see bar charts in Fig. 6).

Discussion
The present study combined computational modeling of behav-

ior with fMRI to characterize common and distinct cortical

mechanisms for predictive processing in spatial attentional and

motor intentional systems. Manual RTs in two probabilistic cue-

ing tasks were similarly affected by unsignaled changes in the

predictability of a cue that indicated either the location of or the

required response to a target stimulus. Differential parametric

effects of BOLD responses by model-derived cue predictability in

valid and invalid trials were regarded as signatures of the belief

updating by precision-weighted prediction errors. Brain areas

exhibiting such activity patterns were distinct for spatial attention

and motor intention, with an involvement of the left ANG and

ACC for motor intention and the right TPJ for spatial attention.

In these areas, BOLD amplitudes were increased in invalid trials

with higher estimated cue predictability (i.e., when an invalidly

cued target was more unexpected) and decreased (ACC) or un-

modulated (TPJ and ANG) in valid trials. There were no com-

mon areas in which cue predictability modulated neural activity

in both domains. However, connectivity analyses revealed that

the right hippocampus contributed to predictive processing in all

three areas (TPJ during spatial attention; ANG and ACC during

motor intention). Our results therefore suggest that, although the

Figure 6. Results of the conjunction analysis of cue-predictability-dependent coupling changes with the right TPJ during spatial attention and the left ANG and ACC during motor intention

(yellow). The hippocampus (violet) is shown according to the Automated Anatomical Labeling atlas provided in MRIcroN. Analysis of the parameter estimates for the parametric PPI regressors in

valid and invalid trials revealed that a significant predictability-dependent coupling effect with the hippocampus was present for all three seed regions. Blue bars indicate the spatial attention task;

green bars, the motor intention task. L, Left hemisphere; R, right hemisphere.
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flexible control by inferred cue predictability recruited differential
cortical structures in the two cognitive domains (i.e., spatial atten-
tion, motor intention), these structures all showed predictability-
dependent coupling with the hippocampus.

Behavior
In both the spatial attention and the motor intention task, RTs
were equally affected by invalid cue information, as well as by
experimentally manipulated changes in the probability that the
cue would be valid. Moreover, there were no differences in the
overall level of RTs or accuracy. Similarly, there were no signifi-
cant differences in the parameters of the hierarchical Gaussian
filter governing the trialwise estimation of cue predictability be-
tween the two tasks. This is consistent with previous studies
showing the sensitivity of behavioral responses to probabilistic
context during spatial attention (Vossel et al., 2014a) and motor
intention (Bestmann et al., 2008). However, the model parame-
ters were not correlated between the spatial attention and motor
intention task. This contrasts with findings from the comparison
of a spatial and a feature-based attention task, where the updating
parameter of the second level of the model (�) was significantly
correlated between the two task versions (Dombert et al., 2016a).
Consistent with these behavioral results, Dombert et al. (2016a)
found a common modulation of reorienting-related activity in
the left intraparietal sulcus, whereas the conjunction analysis in
the present study did not reveal any significant common effect.

Distinct and common mechanisms of cue-predictability-
dependent processing
Differential effects mediated (in our predictive processing
model) by precision-weighted prediction errors were found in
the left ANG and ACC for motor intention and in the right TPJ
for spatial attention. Here, BOLD amplitudes increased with
higher model-derived cue predictability in invalid trials. In TPJ
and ANG, there was no substantial modulatory effect in valid
trials. Although a negative parametric modulation effect would
have been predicted from theoretical grounds, this finding is con-
sistent with data from Lasaponara et al. (2011),who showed that
effects of higher percentage of cue validity on RTs and ERPs can
be stronger for cueing costs (invalid trials compared with neutral
trials) than for benefits (valid trials compared with neutral trials).

The effect in the right TPJ replicates findings from previous
studies using the same modeling approach with either saccadic
responses (Vossel et al., 2015) or manual responses (Dombert et
al., 2016a). It also extends these previous findings by showing that
this effect was specific for the spatial attention condition because
it was not observed for the motor intention task (cf. Fig. 5A).
Because we were able to differentiate between attentional and
motor intentional aspects in the present paradigm, we can ascribe
the effect in TPJ to purely spatial attentional mechanisms. In
other words, the preparation of eye movements or the allocation
of covert spatial attention seem to involve different mechanisms
than the preparation of limb movements.

Conversely, reorienting after invalid motor (but not spatial)
cues was affected by model-derived cue predictability in the left
ANG and the ACC extending into the left medial superior frontal
gyrus. The finding that cue-predictability-dependent effects in a
feature-based cueing task without a motor intentional compo-
nent were observed in yet another brain region in the study by
Dombert et al. (2016a) supports the interpretation that the effects
in the present study were driven by the motor intentional com-
ponent rather than by the expectation of a specific target feature.
The area in the ACC has also been described as the rostral cingu-

late zone (RCZ). Our findings are consistent with a study on
reward learning of actions, which reported that the RCZ re-
sponded stronger to negative events in a probabilistic reversal
learning task when the reward rate was high (Jocham et al., 2009).
Similarly, in our study, the BOLD response in this region to
invalidly cued motor responses was increased with higher esti-
mated cue predictability even though there was no reward asso-
ciated with the action. The ACC has also been shown to be
especially triggered during cognitively demanding actions after
context-specific behavioral surprise (Tobia et al., 2016), as well as
during action selection when different response alternatives are
competing (Botvinick et al., 1999), which would correspond to
invalid trials in the present task. Similarly, predictability-dependent
modulation of ACC activity during the motor intention task
could also reflect the suppression of the previously prepared mo-
tor response. van Gaal and colleagues (2010) characterized a neu-
ral network comprising the ACC responsible for the inhibition of
responses during a go/no-go task. Our results support the previ-
ous associations of ACC with response conflict and selection, but
add that this area is modulated by the inferred cue predictability
regardless of external reward.

According to probabilistic fiber tracking, the ACC is intercon-
nected structurally with a subregion of the ANG (Caspers et al.,
2011), which also showed predictability-dependent effects in the
motor intention task. It has to be noted that this parietal activa-
tion was located more posteriorly than the activation reported by
previous studies on motor intention in the supramarginal gyrus,
which did not consider predictability-dependent effects (Rush-
worth et al., 2001b). Ranganath and Ritchey (2012) suggest that
the ANG might be a candidate area for integrating contextual
information due to its connection to the hippocampus and a wide-
spread posterior medial system. Another view is that the ANG is a
core region for providing an interface between the converging
bottom-up multisensory inputs and the top-down predictions in
the perception-to-action loop and that this can explain its in-
volvement in a variety of functions (Seghier, 2013). Our data
extend these previous findings by showing that activity in the
ANG is modulated by probabilistic context on a short trial-by-
trial time scale and that this effect is specific for situations with a
motor intentional component.

The conjunction analysis of predictability-dependent pro-
cessing did not detect any common brain regions for spatial at-
tention and motor intention. This finding, together with the
significant differential effects reflected in the interactions of task
and validity discussed above, argue against a mere “frequency
detector” module in the brain, which simply responds to rare
events. Interestingly, however, the additional PPI analysis re-
vealed a converging coupling pattern between all three seed re-
gions (TPJ, ACC, and ANG) and the anterior hippocampus for
predictability-dependent processing. The hippocampus has been
shown to encode the predictability or expected uncertainty (en-
tropy) in choice and sequential RT tasks (Strange et al., 2005;
Harrison et al., 2006). Moreover, a recent study has shown that
update signals in different brain structures lead to activity
changes in the hippocampus and other medial temporal lobe
structures, which may suggest that these latter regions provide an
online store or neural representation of a current internal model
(Boorman et al., 2016). Our data, together with these previous
results, provide evidence that the trialwise inference of predict-
ability (involving the temporal integration and processing of re-
lationships between events) recruits the hippocampal system
regardless of the content of the encoded information (motoric or
spatial). Therefore, the hippocampal system can process different
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types of (spatial and nonspatial) stimulus information flexibly
(Viard et al., 2011) and support the formation of internal models
to control perception and action in an uncertain world.

In conclusion, our findings provide novel insights into the
generality and specificity of the computational anatomy under-
lying the flexible control of attention and intention in the human
brain. Our data, together with previous findings in the attentional
domain, argue for the notion that precision-weighted prediction
errors induce belief updating in each cognitive domain sepa-
rately, but that the necessity to relate new information to previous
events and integrating it into memory involves crosstalk with the
hippocampus in both systems regardless of the informational
content. Therefore, our results confirm the previously reported
dissociation and complementary lateralization of spatial atten-
tion and motor intention in the parietal cortex. At the same time,
they highlight similarities of both systems in terms of computa-
tional principles and connectivity profiles.
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Tobia MJ, Gläscher J, Sommer T (2016) Context-specific behavioral sur-

prise is differentially correlated with activity in anterior and posterior

brain systems. Neuroreport 27:677– 682. CrossRef Medline

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Del-

croix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of

activations in SPM using a macroscopic anatomical parcellation of the MNI

MRI single-subject brain. Neuroimage 15:273–289. CrossRef Medline

van Gaal S, Ridderinkhof KR, Scholte HS, Lamme VA (2010) Unconscious

activation of the prefrontal no-go network. J Neurosci 30:4143– 4150.

CrossRef Medline

Viard A, Doeller CF, Hartley T, Bird CM, Burgess N (2011) Anterior hip-

pocampus and goal-directed spatial decision making. J Neurosci 31:4613–

4621. CrossRef Medline

Vossel S, Mathys C, Daunizeau J, Bauer M, Driver J, Friston KJ, Stephan KE

(2014a) Spatial attention, precision, and Bayesian inference: a study of

saccadic response speed. Cereb Cortex 24:1436 –1450. CrossRef Medline

Vossel S, Bauer M, Mathys C, Adams RA, Dolan RJ, Stephan KE, Friston KJ

(2014b) Cholinergic stimulation enhances Bayesian belief updating in

the deployment of spatial attention. J Neurosci 34:15735–15742. CrossRef

Medline

Vossel S, Mathys C, Stephan KE, Friston KJ (2015) Cortical coupling reflects

Bayesian belief updating in the deployment of spatial attention. J Neuro-

sci 35:11532–11542. CrossRef Medline

5344 • J. Neurosci., May 24, 2017 • 37(21):5334 –5344 Kuhns et al. • Attention, Intention, and Predictability


