001     829549
005     20240711101428.0
024 7 _ |a 10.3390/en10030361
|2 doi
024 7 _ |a 2128/14260
|2 Handle
024 7 _ |a WOS:000398736700101
|2 WOS
024 7 _ |a altmetric:17342061
|2 altmetric
037 _ _ |a FZJ-2017-03234
082 _ _ |a 620
100 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 0
|e Corresponding author
245 _ _ |a A Top-Down Spatially Resolved Electrical Load Model
260 _ _ |a Basel
|c 2017
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1493130984_8486
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The increasing deployment of variable renewable energy sources (VRES) is changing the source regime in the electrical energy sector. However, VRES feed-in from wind turbines and photovoltaic systems is dependent on the weather and only partially predictable. As a result, existing energy sector models must be re-evaluated and adjusted as necessary. In long-term forecast models, the expansion of VRES must be taken into account so that future local overloads can be identified and measures taken. This paper focuses on one input factor for electrical energy models: the electrical load. We compare two different types to describe this, namely vertical grid load and total load. For the total load, an approach for a spatially-resolved electrical load model is developed and applied at the municipal level in Germany. This model provides detailed information about the load at a quarterly-hour resolution across 11,268 German municipalities. In municipalities with concentrations of energy-intensive industry, high loads are expected, which our simulation reproduces with a good degree of accuracy. Our results also show that municipalities with energy-intensive industry have a higher simulated electric load than neighboring municipalities that do not host energy-intensive industries. The underlying data was extracted from publically accessible sources and therefore the methodology introduced is also applicable to other countries
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a ter Stein, Felix
|0 P:(DE-Juel1)161197
|b 1
700 1 _ |a Schwane, Adrien
|0 P:(DE-Juel1)166481
|b 2
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 3
|u fzj
773 _ _ |a 10.3390/en10030361
|g Vol. 10, no. 3, p. 361 -
|0 PERI:(DE-600)2437446-5
|n 3
|p 361 -
|t Energies
|v 10
|y 2017
|x 1996-1073
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/829549/files/energies-10-00361-v2.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/829549/files/energies-10-00361-v2.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/829549/files/energies-10-00361-v2.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/829549/files/energies-10-00361-v2.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/829549/files/energies-10-00361-v2.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/829549/files/energies-10-00361-v2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:829549
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGIES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21