000829605 001__ 829605
000829605 005__ 20210129230321.0
000829605 0247_ $$2doi$$a10.1016/j.envsoft.2017.03.011
000829605 0247_ $$2ISSN$$a1364-8152
000829605 0247_ $$2ISSN$$a1873-6726
000829605 0247_ $$2WOS$$aWOS:000403512500029
000829605 0247_ $$2altmetric$$aaltmetric:21833658
000829605 0247_ $$2Handle$$a2128/25340
000829605 037__ $$aFZJ-2017-03285
000829605 082__ $$a690
000829605 1001_ $$0P:(DE-Juel1)140349$$aKurtz, Wolfgang$$b0$$eCorresponding author
000829605 245__ $$aIntegrating hydrological modelling, data assimilation and cloud computing for real-time management of water resources
000829605 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000829605 3367_ $$2DRIVER$$aarticle
000829605 3367_ $$2DataCite$$aOutput Types/Journal article
000829605 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1589804921_30512
000829605 3367_ $$2BibTeX$$aARTICLE
000829605 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829605 3367_ $$00$$2EndNote$$aJournal Article
000829605 520__ $$aOnline data acquisition, data assimilation and integrated hydrological modelling have become more and more important in hydrological science. In this study, we explore cloud computing for integrating field data acquisition and stochastic, physically-based hydrological modelling in a data assimilation and optimisation framework as a service to water resources management. For this purpose, we developed an ensemble Kalman filter-based data assimilation system for the fully-coupled, physically-based hydrological model HydroGeoSphere, which is able to run in a cloud computing environment. A synthetic data assimilation experiment based on the widely used tilted V-catchment problem showed that the computational overhead for the application of the data assimilation platform in a cloud computing environment is minimal, which makes it well-suited for practical water management problems. Advantages of the cloud-based implementation comprise the independence from computational infrastructure and the straightforward integration of cloud-based observation databases with the modelling and data assimilation platform.
000829605 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000829605 588__ $$aDataset connected to CrossRef
000829605 7001_ $$00000-0001-8025-1878$$aLapin, Andrei$$b1
000829605 7001_ $$0P:(DE-HGF)0$$aSchilling, Oliver S.$$b2
000829605 7001_ $$0P:(DE-Juel1)156219$$aTang, Qi$$b3
000829605 7001_ $$0P:(DE-HGF)0$$aSchiller, Eryk$$b4
000829605 7001_ $$0P:(DE-HGF)0$$aBraun, Torsten$$b5
000829605 7001_ $$0P:(DE-HGF)0$$aHunkeler, Daniel$$b6
000829605 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b7$$ufzj
000829605 7001_ $$0P:(DE-HGF)0$$aSudicky, Edward$$b8
000829605 7001_ $$0P:(DE-HGF)0$$aKropf, Peter$$b9
000829605 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b10$$ufzj
000829605 7001_ $$0P:(DE-HGF)0$$aBrunner, Philip$$b11
000829605 773__ $$0PERI:(DE-600)2027304-6$$a10.1016/j.envsoft.2017.03.011$$gVol. 93, p. 418 - 435$$p418 - 435$$tEnvironmental modelling & software$$v93$$x1364-8152$$y2017
000829605 8564_ $$uhttps://juser.fz-juelich.de/record/829605/files/Integrating_hydrological_modelling__data_assimilation_and_cloud_computing_for_real_time_management_of_water_resources.pdf$$yPublished on 2017-04-27. Available in OpenAccess from 2019-04-27.
000829605 8564_ $$uhttps://juser.fz-juelich.de/record/829605/files/Kurtz_etal_2017_EnvSoft.pdf
000829605 8564_ $$uhttps://juser.fz-juelich.de/record/829605/files/Integrating_hydrological_modelling__data_assimilation_and_cloud_computing_for_real_time_management_of_water_resources.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-04-27. Available in OpenAccess from 2019-04-27.
000829605 8564_ $$uhttps://juser.fz-juelich.de/record/829605/files/Kurtz_etal_2017_EnvSoft.pdf?subformat=pdfa$$xpdfa
000829605 909CO $$ooai:juser.fz-juelich.de:829605$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000829605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140349$$aForschungszentrum Jülich$$b0$$kFZJ
000829605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156219$$aForschungszentrum Jülich$$b3$$kFZJ
000829605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b7$$kFZJ
000829605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b10$$kFZJ
000829605 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000829605 9141_ $$y2017
000829605 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829605 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829605 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000829605 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON MODELL SOFTW : 2015
000829605 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829605 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829605 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829605 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829605 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000829605 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829605 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829605 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829605 920__ $$lyes
000829605 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000829605 980__ $$ajournal
000829605 980__ $$aVDB
000829605 980__ $$aUNRESTRICTED
000829605 980__ $$aI:(DE-Juel1)IBG-3-20101118
000829605 9801_ $$aFullTexts