001     829605
005     20210129230321.0
024 7 _ |a 10.1016/j.envsoft.2017.03.011
|2 doi
024 7 _ |a 1364-8152
|2 ISSN
024 7 _ |a 1873-6726
|2 ISSN
024 7 _ |a WOS:000403512500029
|2 WOS
024 7 _ |a altmetric:21833658
|2 altmetric
024 7 _ |a 2128/25340
|2 Handle
037 _ _ |a FZJ-2017-03285
082 _ _ |a 690
100 1 _ |a Kurtz, Wolfgang
|0 P:(DE-Juel1)140349
|b 0
|e Corresponding author
245 _ _ |a Integrating hydrological modelling, data assimilation and cloud computing for real-time management of water resources
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1589804921_30512
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Online data acquisition, data assimilation and integrated hydrological modelling have become more and more important in hydrological science. In this study, we explore cloud computing for integrating field data acquisition and stochastic, physically-based hydrological modelling in a data assimilation and optimisation framework as a service to water resources management. For this purpose, we developed an ensemble Kalman filter-based data assimilation system for the fully-coupled, physically-based hydrological model HydroGeoSphere, which is able to run in a cloud computing environment. A synthetic data assimilation experiment based on the widely used tilted V-catchment problem showed that the computational overhead for the application of the data assimilation platform in a cloud computing environment is minimal, which makes it well-suited for practical water management problems. Advantages of the cloud-based implementation comprise the independence from computational infrastructure and the straightforward integration of cloud-based observation databases with the modelling and data assimilation platform.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lapin, Andrei
|0 0000-0001-8025-1878
|b 1
700 1 _ |a Schilling, Oliver S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tang, Qi
|0 P:(DE-Juel1)156219
|b 3
700 1 _ |a Schiller, Eryk
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Braun, Torsten
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hunkeler, Daniel
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 7
|u fzj
700 1 _ |a Sudicky, Edward
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kropf, Peter
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 10
|u fzj
700 1 _ |a Brunner, Philip
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1016/j.envsoft.2017.03.011
|g Vol. 93, p. 418 - 435
|0 PERI:(DE-600)2027304-6
|p 418 - 435
|t Environmental modelling & software
|v 93
|y 2017
|x 1364-8152
856 4 _ |y Published on 2017-04-27. Available in OpenAccess from 2019-04-27.
|u https://juser.fz-juelich.de/record/829605/files/Integrating_hydrological_modelling__data_assimilation_and_cloud_computing_for_real_time_management_of_water_resources.pdf
856 4 _ |u https://juser.fz-juelich.de/record/829605/files/Kurtz_etal_2017_EnvSoft.pdf
856 4 _ |y Published on 2017-04-27. Available in OpenAccess from 2019-04-27.
|x pdfa
|u https://juser.fz-juelich.de/record/829605/files/Integrating_hydrological_modelling__data_assimilation_and_cloud_computing_for_real_time_management_of_water_resources.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/829605/files/Kurtz_etal_2017_EnvSoft.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:829605
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)140349
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON MODELL SOFTW : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21