001     829625
005     20210129230323.0
024 7 _ |a 10.1093/cercor/bhw010
|2 doi
024 7 _ |a 1047-3211
|2 ISSN
024 7 _ |a 1460-2199
|2 ISSN
024 7 _ |a WOS:000397636600007
|2 WOS
024 7 _ |a altmetric:5621126
|2 altmetric
024 7 _ |a pmid:26874183
|2 pmid
037 _ _ |a FZJ-2017-03294
082 _ _ |a 610
100 1 _ |a Zeineh, Michael
|0 P:(DE-Juel1)161334
|b 0
|e Corresponding author
245 _ _ |a Direct Visualization and Mapping of the Spatial Course of Fiber Tracts at Microscopic Resolution in the Human Hippocampus
260 _ _ |a Oxford
|c 2017
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1493385651_21047
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a While hippocampal connectivity is essential to normal memory function, our knowledge of human hippocampal circuitry is largely inferred from animal studies. Using polarized light microscopy at 1.3 µm resolution, we have directly visualized the 3D course of key medial temporal pathways in 3 ex vivo human hemispheres and 2 ex vivo vervet monkey hemispheres. The multiple components of the perforant path system were clearly identified: Superficial sheets of fibers emanating from the entorhinal cortex project to the presubiculum and parasubiculum, intermixed transverse and longitudinal angular bundle fibers perforate the subiculum and then project to the cornu ammonis (CA) fields and dentate molecular layer, and a significant alvear component runs from the angular bundle to the CA fields. From the hilus, mossy fibers localize to regions of high kainate receptor density, and the endfolial pathway, mostly investigated in humans, merges with the Schaffer collaterals. This work defines human hippocampal pathways underlying mnemonic function at an unprecedented resolution.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 1
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
536 _ _ |a NIH-R01MH092311 - Postnatal Development of Cortical Receptors and White Matter Tracts in the Vervet (NIH-R01MH092311)
|0 G:(DE-Juel1)NIH-R01MH092311
|c NIH-R01MH092311
|f Postnatal Development of Cortical Receptors and White Matter Tracts in the Vervet
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Palomero-Gallagher, Nicola
|0 P:(DE-Juel1)131701
|b 1
|u fzj
700 1 _ |a Axer, Markus
|0 P:(DE-Juel1)131632
|b 2
|u fzj
700 1 _ |a Gräβel, David
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Goubran, Maged
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wree, Andreas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Woods, Roger
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 7
|u fzj
700 1 _ |a Zilles, Karl
|0 P:(DE-Juel1)131714
|b 8
|u fzj
773 _ _ |a 10.1093/cercor/bhw010
|g p. bhw010 -
|0 PERI:(DE-600)1483485-6
|n 3
|p 1779-1794
|t Cerebral cortex
|v 27
|y 2017
|x 1460-2199
856 4 _ |u https://juser.fz-juelich.de/record/829625/files/Zeineh_etal_Cereb%20Cortex.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829625/files/Zeineh_etal_Cereb%20Cortex.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829625/files/Zeineh_etal_Cereb%20Cortex.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829625/files/Zeineh_etal_Cereb%20Cortex.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829625/files/Zeineh_etal_Cereb%20Cortex.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829625/files/Zeineh_etal_Cereb%20Cortex.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829625
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131701
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131632
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131714
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CEREB CORTEX : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CEREB CORTEX : 2015
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21