001     829654
005     20240711113738.0
024 7 _ |a 10.1016/j.nme.2016.10.026
|2 doi
024 7 _ |a 2128/15864
|2 Handle
024 7 _ |a WOS:000417293300197
|2 WOS
037 _ _ |a FZJ-2017-03315
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Bobkov, V.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Progress in reducing ICRF-specific impurity release in ASDEX upgrade and JET
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510581180_28467
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Use of new 3-strap ICRF antennas with all-tungsten (W) limiters in ASDEX Upgrade results in a reduction of the W sources at the antenna limiters and of the W content in the confined plasma by at least a factor of 2 compared to the W-limiter 2-strap antennas used in the past. The reduction is observed with a broad range of plasma shapes. In multiple locations of antenna frame, the limiter W source has a minimum when RF image currents are decreased by cancellation of the RF current contributions of the central and the outer straps. In JET with ITER-like wall, ITER-like antenna produces about 20% less of main chamber radiation and of W content compared to the old A2 antennas. However the effect of the A2 antennas on W content is scattered depending on which antennas are powered. Experiments in JET with trace nitrogen (N2) injection show that a presence of active ICRF antenna close to the midplane injection valve has little effect on the core N content, both in dipole and in -90° phasing. This indicates that the effect of ICRF on impurity transport across the scape-off-layer is small in JET compared to the dominant effect on impurity sources leading to increased impurity levels during ICRF operation.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Aguiam, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Baruzzo, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Borodin, D.
|0 P:(DE-Juel1)7884
|b 3
700 1 _ |a Borodkina, I.
|0 P:(DE-Juel1)171707
|b 4
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 5
700 1 _ |a Coffey, I.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Colas, L.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Czarnecka, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dumortier, P.
|0 P:(DE-Juel1)130001
|b 9
700 1 _ |a Durodie, F.
|0 P:(DE-Juel1)130003
|b 10
700 1 _ |a Dux, R.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Faugel, H.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Fünfgelder, H.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Giroud, C.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Goniche, M.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Hobirk, J.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Herrmann, A.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Jacquot, J.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Jacquet, Ph.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Kallenbach, A.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Krivska, A.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Klepper, C. C.
|0 0000-0001-9107-8337
|b 22
700 1 _ |a Lerche, E.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Menmuir, S.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Milanesio, D.
|0 0000-0002-5114-7235
|b 25
700 1 _ |a Maggiora, R.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Monakhov, I.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Nave, F.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Neu, R.
|0 0000-0002-6062-1955
|b 29
700 1 _ |a Noterdaeme, J.-M.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Ochoukov, R.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Pütterich, Th.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Reinke, M.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Tuccilo, A.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Tudisco, O.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Van Eester, D.
|0 P:(DE-Juel1)130179
|b 36
700 1 _ |a Wang, Y.
|0 P:(DE-Juel1)171441
|b 37
700 1 _ |a Yang, Q.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Zhang, W.
|0 P:(DE-Juel1)130310
|b 39
700 1 _ |a Delabie, Ephrem
|0 P:(DE-Juel1)129994
|b 40
|u fzj
773 _ _ |a 10.1016/j.nme.2016.10.026
|g p. S2352179116300746
|0 PERI:(DE-600)2808888-8
|p 1194-1198
|t Nuclear materials and energy
|v 12
|y 2016
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/829654/files/1-s2.0-S2352179116300746-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/829654/files/1-s2.0-S2352179116300746-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/829654/files/1-s2.0-S2352179116300746-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/829654/files/1-s2.0-S2352179116300746-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/829654/files/1-s2.0-S2352179116300746-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/829654/files/1-s2.0-S2352179116300746-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:829654
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)7884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130001
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130003
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 36
|6 P:(DE-Juel1)130179
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 37
|6 P:(DE-Juel1)171441
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 40
|6 P:(DE-Juel1)129994
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21