000829655 001__ 829655
000829655 005__ 20220930130122.0
000829655 0247_ $$2doi$$a10.1038/ncomms15704
000829655 0247_ $$2Handle$$a2128/14665
000829655 0247_ $$2WOS$$aWOS:000403064600001
000829655 0247_ $$2altmetric$$aaltmetric:19502513
000829655 0247_ $$2pmid$$apmid:28604672
000829655 037__ $$aFZJ-2017-03316
000829655 041__ $$aEnglish
000829655 082__ $$a500
000829655 1001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b0
000829655 245__ $$aElectrical resistance of individual defects on a topological insulator surface
000829655 260__ $$aLondon$$bNature Publishing Group$$c2017
000829655 3367_ $$2DRIVER$$aarticle
000829655 3367_ $$2DataCite$$aOutput Types/Journal article
000829655 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1497267779_22216
000829655 3367_ $$2BibTeX$$aARTICLE
000829655 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829655 3367_ $$00$$2EndNote$$aJournal Article
000829655 520__ $$aThree-dimensional topological insulators host surface states with linear dispersion, which manifest as a Dirac cone. Nanoscale transport measurements provide direct access to the transport properties of the Dirac cone in real space and allow the detailed investigation of charge carrier scattering. Here we use scanning tunnelling potentiometry to analyse the resistance of different kinds of defects at the surface of a (Bi0.53Sb0.47)2Te3 topological insulator thin film. We find the largest localized voltage drop to be located at domain boundaries in the topological insulator film, with a resistivity about four times higher than that of a step edge. Furthermore, we resolve resistivity dipoles located around nanoscale voids in the sample surface. The influence of such defects on the resistance of the topological surface state is analysed by means of a resistor network model. The effect resulting from the voids is found to be small compared with the other defects.
000829655 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000829655 588__ $$aDataset connected to CrossRef
000829655 7001_ $$0P:(DE-Juel1)145534$$aEschbach, Markus$$b1
000829655 7001_ $$0P:(DE-Juel1)165229$$aHeider, Tristan$$b2
000829655 7001_ $$0P:(DE-Juel1)156236$$aLanius, Martin$$b3
000829655 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b4
000829655 7001_ $$0P:(DE-Juel1)167347$$aRosenbach, Daniel$$b5
000829655 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b6
000829655 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b7
000829655 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b8
000829655 7001_ $$0P:(DE-Juel1)130895$$aPlucinski, Lukasz$$b9
000829655 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b10
000829655 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus Michael$$b11
000829655 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b12$$eCorresponding author
000829655 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms15704$$gVol. 8, p. 15704 -$$p15704$$tNature Communications$$v $$x2041-1723$$y2017
000829655 8564_ $$uhttps://juser.fz-juelich.de/record/829655/files/ncomms15704.pdf$$yOpenAccess
000829655 8564_ $$uhttps://juser.fz-juelich.de/record/829655/files/ncomms15704.gif?subformat=icon$$xicon$$yOpenAccess
000829655 8564_ $$uhttps://juser.fz-juelich.de/record/829655/files/ncomms15704.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000829655 8564_ $$uhttps://juser.fz-juelich.de/record/829655/files/ncomms15704.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000829655 8564_ $$uhttps://juser.fz-juelich.de/record/829655/files/ncomms15704.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000829655 8564_ $$uhttps://juser.fz-juelich.de/record/829655/files/ncomms15704.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829655 8767_ $$82676051600$$92017-04-26$$d2017-05-02$$eAPC$$jZahlung erfolgt$$pNCOMMS-16-26719B
000829655 909CO $$ooai:juser.fz-juelich.de:829655$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b0$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145534$$aForschungszentrum Jülich$$b1$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165229$$aForschungszentrum Jülich$$b2$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156236$$aForschungszentrum Jülich$$b3$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b4$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167347$$aForschungszentrum Jülich$$b5$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b6$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b7$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b8$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130895$$aForschungszentrum Jülich$$b9$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b10$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b11$$kFZJ
000829655 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b12$$kFZJ
000829655 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000829655 9141_ $$y2017
000829655 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829655 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000829655 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000829655 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000829655 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2015
000829655 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2015
000829655 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000829655 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000829655 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829655 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829655 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829655 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829655 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000829655 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829655 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000829655 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829655 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829655 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829655 920__ $$lyes
000829655 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000829655 980__ $$ajournal
000829655 980__ $$aVDB
000829655 980__ $$aUNRESTRICTED
000829655 980__ $$aI:(DE-Juel1)PGI-3-20110106
000829655 980__ $$aAPC
000829655 9801_ $$aAPC
000829655 9801_ $$aFullTexts