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Interplay of nematic and magnetic orders in FeSe under pressure
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We offer an explanation for the recently observed pressure-induced magnetic state in the iron-chalcogenide

FeSe based on ab initio estimates for the pressure evolution of the most important Coulomb interaction parameters.

We find that an increase of pressure leads to an overall decrease mostly in the nearest-neighbor Coulomb repulsion,

which in turn leads to a reduction of the nematic order and the generation of magnetic stripe order. We treat

the concomitant effects of band renormalization and the induced interplay of nematic and magnetic order in

a self-consistent way and determine the generic topology of the temperature-pressure phase diagram and find

qualitative agreement with the experimentally determined phase diagram.
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I. INTRODUCTION

The dominant electronic interactions that govern the low-

energy physical properties and the ordered phases of iron-

based superconductors continue to challenge the condensed

matter community. In this respect recent intense research

efforts have focused on the material FeSe due to its peculiar

properties. This material exhibits a prominent electronic driven

(nematic) structural phase transition setting in at ∼90 K below

which the C4-symmetry of the lattice is broken. Importantly,

for FeSe at ambient pressure there is no concomitant magnetic

transition at any lower temperatures in contrast to other known

iron-based superconductors [1,2]. For this reason nematic

ordering distinct from the spin-nematic scenario [3–6] has

been suggested. FeSe is, however, poised to magnetism [7] as

evidenced by enhanced spin fluctuations [8–11], and eventual

generation of static magnetic order at moderate uniaxial

pressure above ∼1–2 GPa [12–15]. The pressure-induced

magnetic order, which is known to be weak and to be con-

sistent with stripe order similar to the undoped magnetically

ordered compounds [12,16,17], emerges after the structural

transition (nematic phase) has been sufficiently suppressed

by the pressure [15,18,19]. Finally, the superconducting

critical temperature Tc of FeSe is fascinatingly adjustable as

seen both by its approximately fourfold enhancement under

pressure [2,12,15,18,19] and by the Tc ∼ 100 K for monolayer

FeSe on STO substrates [20,21].

While the generation of nematic order in FeSe appears

to be of electronic origin [22,23], the fundamental mecha-

nism remains controversial at present. Candidates include,

for example, spontaneous orbital order as suggested by

NMR experiments [22,24] and theoretical studies [25,26],

frustrated magnetism [7], quantum paramagnetism [27], spin

quadrupolar order [28], or as a result of competitive sub-

leading charge-current density wave order [29]. The open

question of the origin of nematic order in FeSe is presumably
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related to the sizable electronic interactions present in the

Fe chalcogenides [30–34]. Strong correlations may generate

distinct orbital selective properties for sufficiently large Hunds

coupling [35–40], and such orbital selectivity seems indeed

present in FeSe as shown recently by a detailed modeling of

the superconducting gap anisotropy in this material [41,42].

Recently, yet another candidate was proposed for the

origin of nematic order in FeSe; longer ranged Coulomb

interactions [43,44]. From ab initio studies it is known that

nearest-neighbor (NN) Coulomb repulsions are larger for FeSe

than in any of the other iron-based superconductors [31], due

to reduced screening from the lack of spacer layers and/or the

lower Fe-Fe bond lengths. Jiang et al. [43] and others [44,45]

highlighted the importance of NN Coulomb repulsions in FeSe

and showed that such longer-ranged interactions can both (1)

strongly renormalize the electronic structure and naturally

generate small Fermi pockets as seen in FeSe by ARPES and

quantum oscillations [6,46–53] and (2) induce nematic site

and bond order given by a spontaneous splitting of the dxz-

and dyz-dominant states. In Ref. [43] it was advocated that the

competition of nematic order with magnetic order also may

explain the absence of magnetism in FeSe at ambient pressure.
Here, based on ab initio calculations for the pressure depen-

dence of the important interaction parameters including onsite
U and NN V Coulomb repulsions, we model the pressure
dependence of both nematic and magnetic order within the
longer-range interaction scenario for nematic order described
above. We map out the general phase diagram of magnetic and
nematic order and find that a lowering of V pushes the system
from a purely nematic phase (driven by V ) into a magnetically
ordered stripe phase (driven by U ). As enhanced pressure is
found to decrease V this offers a possible explanation of the
pressure-induced magnetic phase in FeSe. Finally, we find also
that the density of states near the Fermi level is larger in the
magnetic phase than in the nematic phase, consistent with the
overall increase of the superconducting Tc with pressure.

We note that two recent theoretical studies also investigated

the interplay of nematic and magnetic order in FeSe under pres-

sure [7,54]. In Ref. [7] a pressure-dependent unusual magnetic
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frustration was identified via first-principles calculations while

Ref. [54] analyzed the consequences for the spin fluctuations of

a pressure-induced dxy-dominant hole pocket. Here we focus

on the pressure-evolution of the interaction parameters and

pinpoint the important role of the NN Coulomb repulsion V in

explaining the pressure-temperature phase diagram of FeSe.

The manuscript is structured as follows. We begin with

a definition of the extended multiorbital Hubbard model in

Sec. II and briefly collect the set of self-consistent fields that

enter the mean-field description of the correlated electronic

system in Sec. III. We then present our main results about

the phase diagram of the model in Sec. IV and provide a

simple mechanism for the emergence of magnetism under

application of pressure in FeSe. To connect the parameter

space of the extended multiorbital Hubbard model to the

measured pressure-temperature phase diagram, we analyze in

Sec. V the pressure dependence of hoppings and interaction

parameters based on ab initio data. Finally, we discuss our

results in Sec. VI. We collect details about the Hartree-Fock

decoupling and the nematic order parameter in Appendix A.

In Appendix B, we summarize known results about the band-

and Fermi surface renormalization and nematic order induced

by strong NN Coulomb repulsion and provide a RPA-level

instability analysis in the spin channel for the renormalized

band structures to show the enhanced spin density wave (SDW)

ordering tendencies induced by NN Coulomb repulsion.

II. EXTENDED MULTIORBITAL HUBBARD MODEL

The itinerant electron system is described by a five-orbital

hopping Hamiltonian H0 defined in the two-dimensional one-

iron Brillouin zone (1-Fe BZ), a Hubbard-Hund interaction

Hamiltonian HU , and a NN Coulomb repulsion HV ,

H = H0 + HU + HV , (1)

with

H0 =
∑

σ

∑

i,j

∑

µ,ν

c
†
iµσ

(

t
µν

ij − µ0δijδµν

)

cjνσ , (2)

and

HU = U
∑

i,µ

niµ↑niµ↓ +
(

U ′ −
J

2

)

∑

i,µ<ν

niµniν

− 2J
∑

i,µ<ν

Siµ · Siν +
J ′

2

∑

i,µ �=ν,σ

c
†
iµσ c

†
iµσ̄ ciνσ̄ ciνσ , (3)

as well as

HV = V
∑

〈i,j〉,µ,ν

niµnjν . (4)

Here, the indices µ,ν ∈ {dxz,dyz,dx2−y2 ,dxy,d3z2−r2} specify

the 3d-Fe orbitals and i,j run over the sites of the square

lattice. The filling is fixed by the chemical potential µ0, and the

onsite interaction is parametrized by an intraorbital Hubbard-

U , an interorbital coupling U ′, Hund’s coupling J , and pair

hopping J ′. We will restrict ourselves to interaction parameters

respecting orbital-rotational symmetry, which are realized for

U ′ = U − J − J ′, J = J ′. The fermionic operators c
†
iµσ , ciµσ

create and destroy, respectively, an electron at site i in orbital µ

with spin polarization σ . Accordingly, we define the operators

for local charge and spin as niµ = niµ↑ + niµ↓ with niµσ =

c
†
iµσ ciµσ and Siµ = 1

2

∑

σσ ′ c
†
iµσσ σσ ′ciµσ ′ , respectively. Here,

σ denotes the vector of Pauli matrices. We specify the hopping

parameters t
µν

ij according to the band structure discussed in

Ref. [55] and neglect the effects of spin-orbit coupling.

III. SELF-CONSISTENT TREATMENT OF SPIN-DENSITY

WAVE AND BOND-ORDER MEAN FIELDS

We treat interaction effects in Hartree-Fock theory. To study

the competition between stripe SDW order and nematic bond

order, we decouple the onsite Hubbard-Hund term into the

density fields,

n
µν

0 =
1

N

∑

k,σ

〈c†kµσ ckνσ 〉, (5)

and the magnetic order parameter,

Mµν =
1

N

∑

k,σ

σ 〈c†k+Q,µσ ckνσ 〉, (6)

capturing the formation of collinear SDW order with order-

ing vector Q = (π,0) with antiferromagnetic staggering of

magnetization along x between neighboring Fe sites and a

ferromagnetic spin alignment along y. The k sum runs over

the 1-Fe Brillouin zone and N denotes the number of unit

cells. The density fields n
µν

0 describe orbital-dependent shifts

and yield a weak renormalization of the Fermi surface.

For the NN Coulomb repulsion we adopt the Hartree-Fock

decoupling into bond-order fields as introduced in Ref. [43]

to explain the band renormalization and nematic instability in

FeSe. The self-consistent bond-order fields can be written as

χµν(k,σ ) =
1

N

∑

k′

[2 cos(kx − k′
x)

+ 2 cos(ky − k′
y)]〈c†k′νσ ck′µσ 〉. (7)

The thermal average 〈· · · 〉 is computed with the eigenstates of

the Bloch-Hamiltonian hµν(k,σ ) containing the mean-fields

n
µν

0 , Mµν , χµν(k,σ ). The Bloch-Hamiltonian is defined with

respect to the reduced Brillouin zone [−π/2,π/2) × [−π,π )

and we decompose it according to the different self-consistent

contributions as

hµν(k,σ ) = h
µν

0 (k,σ ) + h
µν

SDW(k,σ ) + h
µν

BO(k,σ ). (8)

The bond-order field χµν(k,σ ) contains both C4 symmetry-

preserving and C4 symmetry-breaking contributions that need

to be treated separately. We refer to the former as the band

renormalization (“br”) part, χ
µν

br (k,σ ), while we denote the

latter as the symmetry-breaking (“sb”) part χ
µν

sb (k,σ ) serving

as a nematic order parameter [43]. Accordingly, we introduce

two different couplings Ṽ and Ṽ0 to control the effects of the

C4 symmetric (Ṽ ) and C4 breaking (Ṽ0) contributions to the

Hamiltonian on the electronic properties and replace h
µν

BO(k,σ )

by h̃
µν

BO(k,σ ) in Eq. (8), see Appendix A for the explicit

expression. The symmetry-preserving part was shown to yield

a substantial band renormalization [43] emerging in a more or

less natural way from repulsive NN interactions. With properly

chosen Ṽ , the electronic band structure is prone to a nematic

instability triggered by Ṽ0 �= 0. We note that for V0 = 0, no

nematic instability can occur within our mean-field approach.
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Since Ṽ and Ṽ0 are the couplings of operators transforming

differently under point group operations, it is natural to

assume Ṽ �= Ṽ0 can occur by applying a renormalization group

procedure to high-energy degrees of freedom. Since we are

not attempting a quantitative determination of these renor-

malization processes or the corresponding couplings from

the microscopic interaction parameters, we denote the phe-

nomenological couplings by a tilde to distinguish them from

the bare microscopic NN Coulomb interaction. Below we use

Ṽ0 > Ṽ to generate a moderate amplitude for the nematic order

parameter. We expand χµν(k,σ ) in NN form factors fA(k) as

χ
µν

br/sb(k,σ ) =
∑

A

χ
µν

br/sb,A(σ )fA(k), A = s,px,py,d. (9)

We then solve the set of self-consistent equations numerically

to determine the mutual influence of band renormalization,

nematic and SDW order. Details on the self-consistent mean-

field approach are collected in Appendix A. We also introduce

the nematic-order parameter in the d-wave channel as

�d =
1

2

∑

σ

[

χ
xz,xz
sb,d (σ ) + χ

yz,yz

sb,d (σ )
]

, (10)

which was established as the leading bond-order wave compo-

nent in the nematic state triggered by the van Hove singularity

for finite Ṽ0 [43]. The dramatic band renormalization and

the deformation of the Fermi surface through nematic order

are demonstrated in Fig. 1 and found to be very similar to

the recently obtained Fermi surface as extracted from, e.g.,

quasiparticle interference [41]. Figures 1(e)–1(g) also provide

evidence that the nematic-order parameter mostly affects the

states close to the Fermi level. This is also expected from a van

Hove-driven instability, where the order parameter is formed

from electronic states at the Fermi level. We note that while

the d-wave order parameter is the dominant nematic order

parameter, the order parameters in the remaining symmetry

channels, like the s-wave, obtain finite expectation values. The

consequences of this can be seen in the additional splitting at

the Ŵ point in the nematic state, see Fig. 1(f). More details on

the band renormalization can also be found in Appendix B.

We additionally specify the interaction Hamiltonians in the

relevant q = 0 channel for dxz and dyz orbitals corresponding

to the two different couplings Ṽ and Ṽ0, where “. . . ” indicates

the contributions involving other orbital combinations:

HṼ |q=0 = −
Ṽ

4N

∑

σ

k,k′

∑

µ,ν,

µ′,ν′

(

fs(k)fs(k
′)τ

µν

0 τ
µ′ν ′

0

+ fd (k)fd (k′)τµν
z τµ′ν ′

z

)

c
†
kµσ ckνσ c

†
k′µ′σ ck′ν ′σ + · · · ,

(11)

and for the scattering driving the nematic instability,

HṼ0
|q=0 = −

Ṽ0

4N

∑

σ

k,k′

∑

µ,ν,

µ′ ,ν′

(

fs(k)fs(k
′)τµν

z τµ′ν ′

z

+ fd (k)fd (k′)τ
µν

0 τ
µ′ν ′

0 − 2fpx
(k)fpx

(k′)P µν
xz P µ′ν ′

xz

− 2fpy
(k)fpy

(k′)P µν
yz P µ′ν ′

yz

)

c
†
kµσ ckνσ c

†
k′µ′σ ck′ν ′σ

+ · · · , (12)

FIG. 1. (a, d) Orbital-resolved Fermi surfaces obtained from

the spectral function at filling n = 6 for different values of the

NN Coulomb interaction parameters. Renormalizations due to the

local interaction are typically small and are neglected here. (a)

The Fermi surface of the tight-binding model without additional

renormalizations, Ṽ = Ṽ0 = 0. (b, c) The Fermi surface including

the self-consistent band renormalization χ
µν

br due to NN Coulomb

repulsion, (b) Ṽ = 0.35 eV, (c) Ṽ = 0.74 eV. (d) The Fermi surface

in the nematic state stabilized by Fermi surface renormalization

and a self-consistently C4 symmetry-breaking contribution, Ṽ =
0.74 eV, Ṽ0/Ṽ = 1.8. (e)–(f) Cuts through the electronic spectrum

as extracted from the spectral function in a symmetric interval

[−0.1,0.1] eV around the Fermi level. The renormalized, tetragonal

bands corresponding to the Fermi surface in (c) are shown in black as

a reference. The colored curves show the orbitally resolved bands in

the nematic state, corresponding to (d). The dxy-dominated states

are hardly affected by the nematic order, while the dxz and dyz

states experience a sizable shift. The deformation of the bands by

the nematic order parameter is effective mostly close to the Fermi

level. We note that the nematic order parameter does not only shift

the states at X and Y , but also induces a splitting at the Ŵ point.

where the orbital indices run only over dxz and dyz and τ0,

and τz denote Pauli matrices in the dxz − dyz subspace. The

matrices Pxz = 1
2
(τ0 + τz) and Pyz = 1

2
(τ0 − τz) project onto

dxz and dyz orbitals, respectively.

IV. TEMPERATURE-PRESSURE PHASE DIAGRAM

In the following, we will present our main result, namely the

Ṽ − T phase diagram for a multiorbital model of FeSe, where
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we allow for stripe SDW order with ordering vector Q = (π,0)

and uniform nematic bond order. We note that we take the full

order parameter χ
µν

br into account, without restricting to the

dxz,dyz subspace.

In modeling the pressure effects, based on ab initio findings

discussed in Sec. V, we proceed in the following way. We take

the Hamiltonian Eq. (1) and assume a uniform renormalization

of the hopping matrix elements under application of pressure

and therefore replace t
µν

ij → α−1(p)t
µν

ij in the kinetic term H0

with a renormalization factor α−1(p) � 1, where we made the

dependence of pressure p explicit. Thus, the Hamiltonian is

written as

H = α−1(p)H0 + HU (p) + HV (p), (13)

where we also replaced the couplings of the onsite interactions

by pressure dependent functions. To work with a fixed

bandstructure we rescale the Hamiltonian by the factor α(p)

and arrive at a rescaled Hamiltonian,

H ′(p) = α(p)H = H0 + Hα(p)U (p) + Hα(p)V (p). (14)

We note that such a rescaling in principle also entails a

rescaling of temperature. Since our aim in this work is to

provide a proof of principle that the NN Coulomb repulsion

is the relevant variable that is responsible for the topology

of the temperature-pressure phase diagram, we refrain from

determining an approximation for α(p) and instead determine

a phase diagram in the parameter space spanned by αT and

αṼ . As an additional simplification, we take α(p)U (p) and

α(p)J (p) as well as the other local couplings to be constant.

The subsequent mean-field decoupling and splitting of the

rescaled coupling αV into αṼ and αṼ0 proceeds as explained

in Sec. III. For concreteness, we fix the ratio Ṽ0/Ṽ = 1.8.

The value of Ṽ0 essentially controls the size of the nematic

d-wave order parameter �d and thereby the size of the splitting

between dxz and dyz orbitals at high-symmetry points in the

BZ. The splitting at the M point in the 2-Fe BZ is about

50 meV in the low-temperature nematic phase for this choice of

parameters. While this value might overestimate the size with

respect to the experimentally observed spectral splitting [56],

we note that on the level of our self-consistent mean-field

description, fluctuation effects of nematic and magnetic order

parameters are not included. We expect that including their

feedback on the phase diagram will lead to a downward

renormalization of critical temperatures and the magnitudes

of the order parameters. Changing the value of Ṽ0 for fixed Ṽ

effectively tunes both the size of this splitting and the extent

of the nematic phase [43]. The topology of the phase diagram

remains robust, however, to changing the ratio Ṽ0/Ṽ .
Solving the self-consistent mean-field equations yields the

phase diagrams shown in Figs. 2(a)–2(c), where we used an
80 × 80 grid-discretization of the 1-Fe BZ in the numeri-
cal implementation. We consider the system in a nematic
(magnetic) state if the nematic order parameter (magnetic
moment) exceeds a numerical value of 5 × 10−3. Otherwise,
we consider the system to be in a paramagnetic state. We
note that we reversed the αṼ axis in our phase diagrams,
such that decreasing αṼ corresponds to increasing pressure,
in order to facilitate an easier comparison to the experimental
phase diagrams. We restrict our attention to the interval
αṼ ∈ [0.67,0.77] eV, corresponding to a pressure-induced
decrease of the rescaled coupling αṼ by ∼ 13 percent, which
we here take as a conservative guess of the true order of
magnitude of the pressure effects on NN Coulomb repulsion.

The on-site intraorbital repulsion was taken to be αU =
1.40 eV. For αJ < 0.325 eV, we observe no magnetic order
in the αṼ range we consider in Fig. 2. We study the influence
of the Hund’s coupling on the phase diagram by looking at
the cases αJ = 0.325, 0.350, 0.375 eV. In line with an RPA-
instability analysis, see Appendix B, the stripe SDW order
sets in around αṼ = 0.73 eV and forms a little dome at the
foot of the nematic phase. The nematic phase can of course be
stabilized for vanishing on-site interactions and is completely
driven by band renormalization due to αṼ and the coupling

(a)

• • • +

−

[ ]

[
]

(b)

• • • +

−

[ ]

[
]

(c)

• • • +

−

[ ]

[
]

FIG. 2. (a)–(c) Phase diagrams in NN Coulomb interaction strength αṼ vs. temperature T/α parameter space for the FeSe model. The red

shaded region denotes the nematic state (N), while the blue shaded region corresponds to the magnetic stripe state (SDW). The coexistence

of nematic order and magnetic order is indicated by magenta color. The points indicate the parameters where self-consistent calculations have

been carried out. We fixed the ratio of Ṽ0/Ṽ = 1.8 generating a splitting of about 50 meV of the degenerate dxz and dyz orbitals at the M point

(with respect to the 2-Fe BZ) in the nematic state. For the displayed phase diagrams we fix αU = 1.40 eV and study the impact of the rescaled

Hund’s coupling αJ on the phase diagram, where in (a) αJ = 0.325 eV, (b) αJ = 0.350 eV, and (c) αJ = 0.375 eV. The black curves show

the integrated density of states in an energy range [−25, + 25] meV to around the Fermi level with αT = 2 meV as a function of V to obtain

a naive estimate of the superconducting Tc.
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αṼ0 triggering the nematic symmetry breaking. We performed
the same mean-field analysis for the interaction parameters
αU = 1.30, 1.50 eV and αJ = 0.325, 0.350, 0.375 eV (not
shown in Fig. 2). As expected, decreasing αU reduces the
SDW ordering tendencies, while increasing αU boosts SDW
order (and correspondingly the size of the ordered magnetic
moment). The phase diagrams in Fig. 2 are representative in
the sense that they already capture the main trends.

The magnetic and the nematic phase show little “competi-

tion” effects: most of the SDW dome coexists with the nematic

phase. The extent of the SDW phase increases as the Hund’s

coupling grows. At the same time, the presence of a finite SDW

order parameter sources a finite nematic order parameter, as

can be expected from symmetry considerations. Both SDW

and nematic phase break the C4 symmetry of the lattice,

while the SDW also breaks SU(2)-spin and time-reversal

symmetry. By formally expanding the mean-field free-energy

in Mµν and χ
µν

sb one obtains a coupling of the modulus of the

SDW order parameter to the nematic bond-order parameter.

Additionally, the two types of instabilities are driven by

different microscopic interactions.

Nevertheless, we emphasize that the two different orders

are intertwined in the considered Ṽ range for the following

reasons: (i) the band renormalization due to NN Coulomb

pushes the van-Hove singularity close to the Fermi level and

(ii) optimizes (π,0)/(0,π ) nesting of the central hole pocket

and the electron pockets. While (i) enables the formation of the

nematic state, it is (ii) that gives rise to an SDW dome of finite

extent for values of the Hund’s coupling that is large enough

to trigger a SDW instability but not large enough to cross

the SDW threshold also for the nonoptimally nested cases.

Previous theoretical studies [57,58] modeling NMR [8,22] and

neutron scattering [9–11] also concluded that FeSe is close to

a magnetic instability. Within our mean-field description the

ordered magnetic moment depends sensitively on temperature.

At the lowest temperatures, we obtain ordered moments

ranging from 0.04–0.12 µB, which is roughly in agreement

with the experimentally reported values in the magnetic phase

of FeSe [16] for the largest ordered moments we found.

Naturally, the largest value of 0.12µB for the ordered moment

is realized for larger Hund’s coupling, here αJ = 0.375 eV.

In order to complete the phase diagrams in Figs. 2(a)–2(c)

we also need an estimate of the evolution of the superconduct-

ing Tc. We leave the determination of the fluctuation induced

Cooper vertex and the solution of the corresponding gap equa-

tion for future work and restrict ourselves to a “poor man’s ar-

gument” by examining the Ṽ dependence of the integrated den-

sity of states (DOS); see Figs. 2(d)–2(f). We chose a symmetric

integration interval of width 50 meV around the Fermi level.

We observe that as the size of the nematic-order parameter de-

creases the integrated DOS tends to increase. This observation

remains true in the SDW-dominated regime. If we now take the

integrated DOS as a proxy for the system’s tendency to build

up a superconducting condensate, it is likely that an increase of

Tc with decreasing αṼ can be observed, in agreement with ex-

periment. Finally, we show representative reconstructed Fermi

surfaces in Figs. 3(a)–3(c) for parameters relevant to Fig. 2(b).

As seen the reconstructed bands contain new tiny Fermi

pockets which seem in overall agreement with recent quantum

oscillations measurements of FeSe under pressure [59].

FIG. 3. (a)–(c) Reconstructed Fermi surfaces for (a) αṼ = 0.77

eV, (b) αṼ = 0.73 eV, and (c) αṼ = 0.69 eV for αU = 1.40 eV and

αJ = 0.350 eV at αT = 2 meV, corresponding to the states in the

phase diagram shown in Fig. 2(b).

V. PRESSURE-INDUCED RENORMALIZATION OF

BANDSTRUCTURE AND COUPLINGS FROM DFT

In this section we want to connect the band and interaction

parameters, particularly the NN Coulomb interaction, to

the application of hydrostatic pressure on FeSe. We extract

these parameters from ab initio calculations on FeSe crystal

structures for the pressure range from 0–10 GPa [60]. We used

the FLEUR package, a full-potential linearized augmented-

plane-wave (FLAPW) density-functional theory method to

compute the ground-state density [61] and the Spex code [62]

to perform constrained RPA (cRPA) calculations [63] to find

the screened Coulomb interactions. Densities were converged

on an 8 × 8 × 8 k-mesh with a Perdew-Burke-Ernzerhof

nonrelativistic functional [64]. The active space of the cRPA

calculation was the five 3d orbitals per Fe. The tight-binding

parameters were obtained [65,66] by using projective Wannier

functions as implemented in the all electron full potential local

orbital (FPLO) code [67].

We show the effect of pressure on the onsite and longer-

ranged couplings in Fig. 4 that are obtained as orbital averages

of orbital resolved interaction matrices extracted from the DFT

calculations. The values at p = 0 are collected in Table I. Here,

we denote the next-nearest-neighbor (NNN) repulsion by V ′.
Interestingly, the couplings U (p),U ′(p),V (p),V ′(p) show a

downward trend under increasing pressure, see Fig. 4(a),

while only the Hund’s coupling J (p) slightly increases. At

intermediate pressures, the longer-ranged couplings V,V ′

show nonmonotonous behavior. In this work, we refrain from

performing our instability analysis for the bandstructures

obtained for different hydrostatic pressures. Instead, we focus

on the most dominant trends. To simplify our calculations,

we keep the band structure fixed and only renormalize the

couplings. To estimate the changes in the 3D band structures

obtained from the present DFT calculations in a semiquanti-

TABLE I. The cRPA values (in eV) at p = 0 of the orbitally

averaged couplings parametrizing the Hubbard-Hund interaction

Hamiltonian.

U (0) U ′(0) J (0) V (0) V ′(0)

3.57 2.23 0.68 0.47 0.28
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(a)
•J(p)/J(0) •U(p)/U(0) •U (p)/U (0)

•V (p)/V (0) •V (p)/V (0)

[ ]

(b)

•α J(p)/J(0) •α U(p)/U(0) •α U (p)/U (0)
•α V (p)/V (0) •α V (p)/V (0)

[ ]

(c)

•α−1
•α−1

⊥

[ ]

FIG. 4. (a) Pressure-induced renormalization of onsite (U,U ′,J ),

NN (V ), and NNN (V ′) couplings extracted from DFT calculations

relative to the p = 0 MPa value. The only coupling that shows a

clear upward trend under application of pressure is Hund’s coupling

J . The intra- and interorbital repulsions U and U ′ as well as

the longer-ranged repulsion V and V ′ decrease with pressure. The

longer-ranged interactions are clearly more affected and display

changes between ∼10 % (V ) and ∼15 % (V ′). (b) Pressure

dependence of couplings rescaled with a rough estimate of the

hopping renormalization from intralayer hoppings, α−1
‖ . (c) Estimates

of the hopping renormalizations for inter- and intralayer hoppings,

α−1
⊥ and α−1

‖ as a function of pressure.

tative way, we arrange all hopping matrix elements t
µν

ij (p) for

a given pressure in a vector t and compute the Euclidean

norm ||t(p)||. We then define the renormalization factors

α−1
‖ (p) = ||t‖(p)||/||t‖(0)|| and α−1

⊥ (p) = ||t⊥(p)||/||t⊥(0)||

for in- and out-of-plane hoppings. Both α−1
‖ (p) and α−1

⊥ (p)

show an upward trend as the pressure is increased; see Fig. 4(c).

We note that these renormalizations give only a gross estimate

of the effect of pressure on the band structure, and additionally

the precise values and even the ratio of in-plane to out-of-plane

renormalization also depend on the choice of the norm.

The upward evolution, however, is a robust feature. To

estimate the evolution of the couplings relative to the increase

in bandwidth in a 2D system, we rescale the couplings of

Fig. 4(a) by the factor α‖(p) and show the pressure evolution

in Fig. 4(b). The rescaled couplings all show a decrease with

increasing pressure. The effect on the longer-ranged couplings

is in any case dominating.

Therefore we suggest that the leading effect of pressure

on the nematic and magnetic orders can be obtained from the

decrease in the NN Coulomb repulsion, leading to the phase

diagram presented in the previous section.

VI. CONCLUSIONS AND DISCUSSION

In this work we have studied the interplay of nematic

bond order and stripe magnetism in an extended multiorbital

Hubbard model for FeSe. We propose an explanation for the

experimentally observed temperatue-pressure phase diagram

of FeSe in terms of a pressure-induced decrease of the NN

Coulomb interaction. Assuming that the formation of the

nematic phase is driven by a band renormalization due to

NN Coulomb, where the size of the magnetic order parameter

is controlled by a coupling in a different symmetry channel,

the decrease of the Coulomb repulsion moves the relevant van

Hove singularity away from the Fermi level and at the same

time optimizes the nesting condition for stripe magnetism.

This naturally explains the decrease of nematic order and

the emergence of magnetic order under the application of

pressure. Concerning the superconducting properties of FeSe,

we attempted to provide a crude estimate for the ordering

tendencies based on the integrated density of states around

the Fermi level, which displays an increase for decreasing the

NN Coulomb interaction. We note for clarity that we did not

attempt to study the competition between superconductivity

and the particle-hole channel instabilities in this work.

In our modeling of the pressure dependence of hoppings

and interaction parameters, we were guided by the results

of ab initio calculations taking the effect of pressure into

account. From these results we distilled a simplified model

assuming that pressure influences all hoppings uniformly and

can thus be treated by a global rescaling of hopping parameters.

Interestingly, the ab initio results suggest that both onsite

and longer-ranged couplings decrease under application of

pressure, with the exception of the Hund’s coupling which

displays a slight increase. The longer-ranged interactions show

the largest decrease. This pressure dependent decrease of

the interaction parameters is attributed to an increase of the

effective screening as the nuclei come closer.

Within our model, the important ingredient is a decrease

of the rescaled NN Coulomb interaction as a function of

pressure. Our conclusions are therefore robust, as long

as the renormalization of the bandwidth due to pressure

overcompensates a possible increase of NN Coulomb under

pressure, as one might naively expect.

094504-6



INTERPLAY OF NEMATIC AND MAGNETIC ORDERS IN . . . PHYSICAL REVIEW B 95, 094504 (2017)

We also note that taking a rescaling of temperature and

onsite interactions into account does not change the main

conclusions about the topology of the phase diagram and

the underlying mechanism, as long as the initial values

U (0),J (0) of the onsite couplings at pressure p = 0 are chosen

appropriately.
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APPENDIX A: HARTREE-FOCK DECOUPLING

AND NEMATIC-ORDER SPARAMETER

We treat interaction effects in Hartree-Fock theory. To study

the competition between stripe SDW order and nematic bond

order, we decouple the onsite Hubbard-Hund term into the

fields

n
µν

0 =
1

N

∑

k,σ

〈c†kµσ ckνσ 〉, Mµν =
1

N

∑

k,σ

σ 〈c†k+Q,µσ ckνσ 〉,

(A1)

with Q = (π,0), while the NN Coulomb repulsion is decoupled

into bond-order order parameters as

χµν(k,σ ) =
1

N

∑

k

[2 cos(kx − k′
x) + 2 cos(ky − k′

y)]

×〈c†k′νσ ck′µσ 〉. (A2)

The average 〈· · · 〉 on the right-hand side is computed with

respect to a thermal state of the Hartree-Fock Hamiltonian

HHF =
∑′

k,µ,νσ �
†
kµσhµν(k,σ )�kνσ . The Bloch-Hamiltonian

hµν(k,σ ) containing the mean-fields Eqs. (A1) and (A2) is de-

fined with respect to the reduced Brillouin zone [−π/2,π/2) ×
[−π,π ). We decompose it as

hµν(k,σ ) = h
µν

0 (k,σ ) + h
µν

SDW(k,σ ) + h
µν

BO(k,σ ), (A3)

where

h
µν

0 (k,σ ) =
(

ξµν(k) + N
µν

0 0

0 ξµν(k + Q) + N
µν

0

)

, (A4)

h
µν

SDW(k,σ ) =
(

0 σWµν

σWµν 0

)

, (A5)

h
µν

BO(k,σ ) = −
V

2

(

χµν(k,σ ) 0

0 χµν(k + Q,σ )

)

+ (µ ↔ ν)∗.

(A6)

The basis is defined by the spinor

�
†
kµσ = (c

†
kµσ c

†
k+Qµσ

), �kµσ =
(

ckµσ

ck+Qµσ

)

, (A7)

and the mean fields Eq. (A1) enter through the quantities

N
µν

0 = δµν
(

Un
µ

0 + (2U ′ − J )n̄ν
0

)

+ δ̄µν
(

(−U ′ + 2J )n
νµ

0 + J ′n
µν

0

)

, (A8)

and

Wµν = δµν(−UMµ − JM̄ν) + δ̄µν(U ′Mνµ − J ′Mµν).

(A9)

Here, δ̄µν = 1 − δµν filters out the orbital off-diagonal com-

ponents. We note that repeated indices are not summed over

in the above expressions. Quantities in Eqs. (A8) and (A9)

with a single orbital index refer to the diagonal element

of the corresponding matrix, e.g., n
µ

0 = n
µµ

0 . Objects with

a bar, such as n̄ν
0, are defined as, e.g., n̄ν

0 =
∑

µ �=ν n
µµ

0 .

The bare dispersion enters through ξµν(k) = εµν(k) − δµνµ0,

where ǫµν(k) is obtained from the Bloch representation of the

hopping Hamiltonian Eq. (2) and µ0 is the chemical potential

controlling the filling of the electronic bands.

The bond-order Hamiltonian needs to be treated with

care. As demonstrated in Ref. [43] the bond-order mean

field χµν(k,σ ) contains both C4 symmetry-preserving and

C4 symmetry-breaking contributions that need to be treated

separately. The symmetry-preserving part was shown to yield

a substantial band renormalization, emerging in a more or

less natural way from including repulsive NN interactions.

Obviously, a breaking of C4 symmetry is not required for

this contribution to be finite. As already demonstrated in

Ref. [43], also the symmetry-breaking contribution can obtain

a finite expectation value bringing the system into a nematic

phase.

To project out the symmetric contribution from χµν(k,σ ),

we first note that under a C4 rotation it transforms as

χµν(k,σ ) → Rµν[χ ] = [χ ′]µν(k′,σ ), (A10)

with

[χ ′]µν(k′,σ ) =
∑

µ′ν ′

[RT]µµ′
χµ′ν ′

(Mk,σ )Rν ′ν, (A11)

where Rµν are the elements of the representation matrix

of a C4 transformation acting on the orbital degrees of

freedom. The matrix M on the other hand corresponds to

the inverse transformation, since momenta and real-space or

orbital degrees of freedom transform oppositely. The matrix R

acting on orbital degrees of freedom reads as

R =















0 1 0 0 0

−1 0 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1















, (A12)

while the matrix M acting on the Bloch vector reads

M =
(

0 −1

1 0

)

. (A13)

The invariant contribution can now be defined as (we note that

R4 = 1)

χbr = 1
4
(χ + R[χ ] + R2[χ ] + R3[χ ]), (A14)
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where we omitted matrix indices and momentum labels for

brevity and Rn denotes R applied n times. Accordingly, the

symmetry-breaking part is

χsb = χ − χbr. (A15)

Following Ref. [43] we can further expand χµν(k,σ ) in NN

form factors,

fs(k) = cos(kx) + cos(ky), (A16)

fd (k) = cos(kx) − cos(ky), (A17)

fpx
(k) =

√
2i sin(kx), (A18)

fpy
(k) =

√
2i sin(ky), (A19)

as

χµν(k,σ ) =
∑

A

χ
µν

A (σ )fA(k), A = s,d,px,py . (A20)

This decomposition of course carries over to χ
µν

br (k,σ ) and

χ
µν

sb (k,σ ). We therefore have to determine the matrices n
µν

0 ,

Mµν as well as χ
µν

br,A(σ ) and χ
µν

sb,A(σ ), A = s,px,py,d self-

consistently within our mean-field approach. The components

of χ
µν

br,A(σ ) lead to a self-consistent renormalization of the

hopping parameters, while the components of χ
µν

sb,A(σ ) serve as

nematic order parameters. As argued in Ref. [43], the coupling

strength of χ
µν

br,A(σ ) and χ
µν

sb,A(σ ), respectively, need not be

identical as they obey different symmetries and can in principle

renormalize differently under the systematic elimination of

high-energy excitations. We now denote the coupling of the

symmetry-preserving part as Ṽ , while the coupling of the

nematic part is now denoted as Ṽ0 and in general Ṽ �= Ṽ0.

One needs Ṽ0 > Ṽ to produce a sizable splitting of the

electronic spectrum at the M point in the 2-Fe BZ. The

bond-order contribution to the Hamiltonian becomes with this

replacement,

h
µν

BO(k,σ ) → h̃
µν

BO(k,σ ) = −
Ṽ

2

(

χ
µν

br (k,σ ) 0

0 χ
µν

br (k + Q,σ )

)

−
Ṽ0

2

(

χ
µν

sb (k,σ ) 0

0 χ
µν

sb (k + Q,σ )

)

+ (µ ↔ ν)∗. (A21)

Below we collect the matrices χ
µν

br,A(σ ) and χ
µν

sb,A(σ ), A = s,px,py,d, for the symmetry-preserving and symmetry-breaking

contributions to the bond-order mean fields, where we suppress the spin label for simplicity. Following Ref. [43] we neglect

contributions from χ12
A , χ21

A , χ34
A , χ43

A and χ45
A , χ54

A that are not compatible with the glide-plane symmetry. The coefficient

matrices for the symmetry-preserving contribution read

χbr,s =

















1
2

(

χ11
s + χ22

s

)

0 0 0 0

0 1
2

(

χ11
s + χ22

s

)

0 0 0

0 0 χ33
s 0 0

0 0 0 χ44
s 0

0 0 0 0 χ55
s

















, (A22)

χbr,px
=



















0 0 1
2

(

χ13
px

+ χ23
py

)

1
2

(

χ14
px

+ χ24
py

)

1
2

(

χ15
px

− χ25
py

)

0 0 1
2

(

χ23
px

− χ13
py

)

1
2

(

χ24
px

− χ14
py

)

1
2

(

χ25
px

+ χ15
py

)

1
2

(

χ31
px

+ χ32
py

)

1
2

(

χ32
px

− χ31
py

)

0 0 0

1
2

(

χ41
px

+ χ42
py

)

1
2

(

χ42
px

− χ41
py

)

0 0 0

1
2

(

χ51
px

− χ52
py

)

1
2

(

χ52
px

+ χ51
py

)

0 0 0



















, (A23)

χbr,py
=



















0 0 − 1
2

(

χ23
px

− χ13
py

)

− 1
2

(

χ24
px

− χ14
py

)

1
2

(

χ25
px

+ χ15
py

)

0 0 1
2

(

χ13
px

+ χ23
py

)

1
2

(

χ14
px

+ χ24
py

)

− 1
2

(

χ15
px

− χ25
py

)

− 1
2

(

χ32
px

− χ31
py

)

1
2

(

χ31
px

+ χ32
py

)

0 0 0

− 1
2

(

χ42
px

− χ41
py

)

1
2

(

χ41
px

+ χ42
py

)

0 0 0

1
2

(

χ52
px

+ χ51
py

)

− 1
2

(

χ51
px

− χ52
py

)

0 0 0



















, (A24)

χbr,d =

















1
2

(

χ11
d − χ22

d

)

0 0 0

0 − 1
2

(

χ11
d − χ22

d

)

0 0 0

0 0 0 0 χ35
d

0 0 0 0 0

0 0 χ53
d 0 0

















. (A25)

094504-8



INTERPLAY OF NEMATIC AND MAGNETIC ORDERS IN . . . PHYSICAL REVIEW B 95, 094504 (2017)

The coefficient matrices for the symmetry-breaking contribution read

χsb,s =

















1
2

(

χ11
s − χ22

s

)

0 χ13
s χ14

s χ15
s

0 − 1
2

(

χ11
s − χ22

s

)

χ23
s χ24

s χ25
s

χ31
s χ32

s 0 0 χ35
s

χ41
s χ42

s 0 0 0

χ51
s χ52

s χ53
s 0 0

















, (A26)

χsb,px
=



















χ11
px

0 1
2

(

χ13
px

− χ23
py

)

1
2

(

χ14
px

− χ24
py

)

1
2

(

χ15
px

+ χ25
py

)

0 χ22
px

1
2

(

χ23
px

+ χ13
py

)

1
2

(

χ24
px

+ χ14
py

)

1
2

(

χ25
px

− χ15
py

)

1
2

(

χ31
px

− χ32
py

)

1
2

(

χ32
px

+ χ31
py

)

χ33
px

0 χ35
px

1
2

(

χ41
px

− χ42
py

)

1
2

(

χ42
px

+ χ41
py

)

0 χ44
px

0

1
2

(

χ51
px

+ χ52
py

)

1
2
(χ52

px
− χ51

py

)

χ52
px

0 χ55
px



















(A27)

χsb,py
=



















χ11
py

0 1
2

(

χ23
px

+ χ13
py

)

1
2

(

χ24
px

+ χ14
py

)

− 1
2

(

χ25
px

− χ15
py

)

0 χ22
py

− 1
2

(

χ13
px

− χ23
py

)

− 1
2

(

χ14
px

− χ24
py

)

1
2

(

χ15
px

+ χ25
py

)

1
2

(

χ32
px

+ χ31
py

)

− 1
2

(

χ31
px

− χ32
py

)

χ33
py

0 χ35
py

1
2

(

χ42
px

+ χ41
py

)

− 1
2

(

χ41
px

− χ42
py

)

0 χ44
py

0

− 1
2

(

χ52
px

− χ51
py

)

1
2

(

χ51
px

+ χ52
py

)

χ53
py

0 χ55
py



















, (A28)

χsb,d =



















1
2

(

χ11
d + χ22

d

)

0 χ13
d χ14

d χ15
d

0 1
2

(

χ11
d + χ22

d

)

χ23
d χ24

d χ25
d

χ31
d χ32

d χ33
d 0 0

χ41
d χ42

d 0 χ44
d 0

χ51
d χ52

d 0 0 χ55
d



















. (A29)

APPENDIX B: BAND RENORMALIZATION, NEMATIC

ORDER, AND SDW ORDERING TENDENCY

In this appendix we provide additional information on the
massive band renormalization due to the self-consistent field
χ

µν

br driven by the NN Coulomb repulsion with strength Ṽ and
the susceptibility to the formation a nematic state, reproducing
some of the results already obtained in Ref. [43]. We obtain
an important new result by uncovering an increased tendency
toward stripe-SDW formation at the flank of the nematic dome
for weakened Coulomb repulsion. We here describe in some
detail the influence of the NN Coulomb repulsion on the Fermi
surface as shown in Fig. 1 in the main text. We put the onsite
interactions to zero, U = J = U ′ = J ′ = 0 and also neglect
the symmetry-breaking part of the NN Coulomb repulsion
by putting Ṽ0 = 0. In Fig. 1(a) we show the Fermi surface
of the tight-binding band-structure [55] in the 1-Fe Brillouin
zone (BZ) for electron filling n = 6, featuring the typical
Fermi surface topology obtained from DFT calculations for
iron-pnictide and iron-chalcogenide materials. The electron
pockets at X and Y as well as the two central hole pockets at
Ŵ feature mixed orbital character, while the hole pockets at M

are dominated by the dxy orbital. Setting Ṽ = 0.74 eV close
to the value that was found to move a van Hove singularity
onto the Fermi surface [43], we show the C4 symmetric Fermi
surface of the strongly renormalized band in Fig. 1(c). We
observe that increasing the NN Coulomb repulsion results

in shrinking both electron and hole pockets. At the same
time, the ellipticity of the electron pockets changes drastically
and results in Fermi surfaces elongated along the Ŵ-X and
Ŵ-Y directions, respectively. The orbital character of the
pockets, however, remains unchanged. The enhancement in
the single-particle density of states makes the band electrons
susceptible to the formation of a q = (0,0) instability. Letting
Ṽ0 �= 0 this ordering-tendency leads to the stabilization of
a uniform, nematic bond order [43] state with dominant
d-wave character. The order parameters corresponding to other
symmetry channels are typically finite due to the broken
C4 symmetry but do not appear as independent instabilities.
We show the Fermi surface in a self-consistently stabilized
nematic state in Fig. 1(d). Additionally, we demonstrate
the band renormalization in the C4 symmetric state in a
narrow window of Ṽ values in Fig. 5. As Ṽ increases,
the dyz dominated electronic band is shifted through the
Fermi level while both electron and hole pockets become
progressively smaller. In the nematic state, the system actually
remains metallic and features a Fermi surface with only
C2 symmetry and a deformation of central hole pockets
around Ŵ and the electron pockets at either X or Y ; see
Fig. 1(d). As a next step we probe the tendency of the system
to SDW formation in the renormalized C4 symmetric phase.
Previous theoretical studies [57,58] modeling NMR [8,22] and
neutron scattering [9–11] data have concluded that FeSe is
close to a magnetic instability. We therefore compute the static
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FIG. 5. (a)–(c) Electronic spectral weight along the high-

symmetry cut Ŵ-X-M-Ŵ in momentum space in a symmetric low-

energy window of width 0.2 eV around the Fermi level. Here U,J = 0

and Ṽ0 = 0. As the interaction strength Ṽ is increased from (a)

Ṽ = 0.69 eV over (b) Ṽ = 0.73 eV to (c) Ṽ = 0.77 eV, both electron

and hole pockets decrease in size. (d)–(f) The corresponding Fermi

surfaces, where for clarity we folded the electron pockets around

X onto the central hole pockets with the folding-vector (π,0) to

illustrate the varying degree of (π,0) nesting. The same conclusions

are obtained for the electron pocket at Y in the nonnematic phase.

The nesting is close to optimal for (e). In the cases (d) and (f) nesting

is in fact suppressed by matrix-element effects.

spin susceptibility in the random phase approximation (RPA)
in the transverse spin channel, defined by

χRPA(ω,q)|ω→0 =
1

2βN

∫ β

0

dτ
∑

µ,ν

σ+
σ1σ2

σ−
σ3σ4

×
∑

k,k′

〈Tτ c
†
k+qµσ1

(τ )ckµσ2
(τ )c

†
k′−qνσ3

(0)

× ck′νσ4
(0)〉RPA, (B1)

where 〈· · · 〉RPA refers the evaluation of the correlation function
in the RPA approximation taking only the on-site interaction

into account in the RPA-resummation process. We construct
the bare propagator from the eigenstates of hµν(k,σ ), see
Eq. (8), and neglect the influence of the mean fields n

µν

0 and
Mµν by setting U,J = 0. The influence of the band renormal-
ization due to χ

µν

br is kept, however. Here, we also introduced
the fermionic operators in the imaginary time representation
and the imaginary time-ordering operator Tτ and introduced
σ+ = σx + iσy and σ− = σx − iσy with σx,σy,σz denoting
the Pauli matrices. A diverging static susceptibility points
at the instability of the system to SDW formation with a
particular ordering vector. In the following, we will restrict our
focus to the ordering vector q = (π,0) or equivalently, by C4

symmetry, q = (0,π ). We have checked, however, that while
small degree of incommensurability of the type (π − δ,η)
with |η|,|δ| ≪ π can in fact occur, in the Ṽ range we are
interested in, the SDW instability does not occur at, e.g.,
q = (π,π ). We focus on a range of the NN Coulomb repulsion
Ṽ ∈ [0.67,0.77] eV where the Fermi surface experiences a
strong renormalization as shown in Fig. 1(c). We further
consider U = 1.3,1.4 eV for the onsite Hubbard-U and vary
the Hund’s coupling for each of the cases independently.
These parameters realize a SDW low-temperature state for
Ṽ = 0 eV, i.e., for the unrenormalized band-structure. As
shown in Fig. 6, we find that as Ṽ is increased starting from
Ṽ = 0.67 eV, the low-energy spin-fluctuations measured by
χRPA(q) at the commensurate wave vector q = (π,0) increase
and reach a maximum as a function of Ṽ at Ṽ ∼ 0.73 eV.
Increasing the NN coupling Ṽ further first leads to a decrease
of low-energy spin fluctuations, but a second, subleading peak
occurs at Ṽ ∼ 0.76 eV. The renormalized band thus supports
the formation of a SDW state with ordering vector q = (π,0)
due to enhanced nesting and the proximity of the van Hove
singularity for sufficiently large on-site interactions.

The dominant effect of allowing for a finite nematic order

parameter �d on the spin excitations is to promote (π,0)

fluctuations relative to (0,π ) fluctuations and vice versa,

depending on which pair of electron pockets is pushed

up or down due to the presence of nematic d-wave bond

order. If �d > 0 the dyz electron-band is pushed up and

the corresponding pocket becomes smaller, while in the case

�d < 0, it is the dxz electron-band that is pushed up. If we

therefore assume that the nematic state sets in first as we

(a)

[ ]

[
−

]

(b)

[ ]

[
−

]

FIG. 6. The static RPA susceptibility χRPA(ω = 0,q) with momentum transfer q = (π,0) as a function of different interaction strength Ṽ for

(a) U = 1.30 eV and (b) U = 1.40 eV and increasing Hund’s coupling (from bottom to top) J = 0.1, 0.2, 0.3, 0.32, 0.324 eV at temperature

T = 2 meV. There is a clear enhancement of (π,0) spin fluctuations in the vicinity of the point where the band renormalization pushes the van

Hove singularity through the Fermi level.
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decrease the temperature of the system, the nematic order

selects the corresponding spin fluctuations and induces SDW

order for appropriate values of the onsite interactions as the

temperature is further decreased.
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Matsuda, T. Wolf, A. E. Böhmer, F. Hardy, C. Meingast, H. v.
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