000829726 001__ 829726
000829726 005__ 20240711113740.0
000829726 0247_ $$2doi$$a10.1088/1361-6587/aa6948
000829726 0247_ $$2ISSN$$a0032-1028
000829726 0247_ $$2ISSN$$a0368-3281
000829726 0247_ $$2ISSN$$a0741-3335
000829726 0247_ $$2ISSN$$a1361-6587
000829726 0247_ $$2ISSN$$a1879-2979
000829726 0247_ $$2WOS$$aWOS:000400090800001
000829726 0247_ $$2altmetric$$aaltmetric:19515767
000829726 037__ $$aFZJ-2017-03364
000829726 082__ $$a530
000829726 1001_ $$0P:(DE-Juel1)130090$$aLitnovsky, A.$$b0$$eCorresponding author
000829726 245__ $$aAdvanced smart tungsten alloys for a future fusion power plant
000829726 260__ $$aBristol$$bIOP Publ.$$c2017
000829726 3367_ $$2DRIVER$$aarticle
000829726 3367_ $$2DataCite$$aOutput Types/Journal article
000829726 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1493881235_17276
000829726 3367_ $$2BibTeX$$aARTICLE
000829726 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829726 3367_ $$00$$2EndNote$$aJournal Article
000829726 520__ $$aThe severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten–chromium–yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten–chroimium–titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.
000829726 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000829726 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000829726 588__ $$aDataset connected to CrossRef
000829726 7001_ $$0P:(DE-Juel1)161367$$aWegener, T.$$b1$$ufzj
000829726 7001_ $$0P:(DE-Juel1)166427$$aKlein, F.$$b2$$ufzj
000829726 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch$$b3
000829726 7001_ $$0P:(DE-Juel1)162160$$aRasinski, M.$$b4$$ufzj
000829726 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b5$$ufzj
000829726 7001_ $$0P:(DE-Juel1)171237$$aTan, X.$$b6$$ufzj
000829726 7001_ $$0P:(DE-Juel1)166256$$aSchmitz, J.$$b7$$ufzj
000829726 7001_ $$0P:(DE-Juel1)165931$$aMao, Y.$$b8$$ufzj
000829726 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b9
000829726 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b10$$ufzj
000829726 7001_ $$0P:(DE-Juel1)162271$$aGonzalez, Jesus$$b11
000829726 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/1361-6587/aa6948$$gVol. 59, no. 6, p. 064003 -$$n6$$p064003 -$$tPlasma physics and controlled fusion$$v59$$x1361-6587$$y2017
000829726 8564_ $$uhttps://juser.fz-juelich.de/record/829726/files/Litnovsky_2017_Plasma_Phys._Control._Fusion_59_064003.pdf$$yRestricted
000829726 8564_ $$uhttps://juser.fz-juelich.de/record/829726/files/Litnovsky_2017_Plasma_Phys._Control._Fusion_59_064003.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829726 909CO $$ooai:juser.fz-juelich.de:829726$$pVDB
000829726 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829726 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000829726 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829726 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA PHYS CONTR F : 2015
000829726 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829726 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829726 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829726 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829726 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829726 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829726 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829726 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829726 9141_ $$y2017
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130090$$aForschungszentrum Jülich$$b0$$kFZJ
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161367$$aForschungszentrum Jülich$$b1$$kFZJ
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166427$$aForschungszentrum Jülich$$b2$$kFZJ
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b3$$kFZJ
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b4$$kFZJ
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b5$$kFZJ
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171237$$aForschungszentrum Jülich$$b6$$kFZJ
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166256$$aForschungszentrum Jülich$$b7$$kFZJ
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165931$$aForschungszentrum Jülich$$b8$$kFZJ
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b9$$kFZJ
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b10$$kFZJ
000829726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000829726 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000829726 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000829726 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000829726 980__ $$ajournal
000829726 980__ $$aVDB
000829726 980__ $$aI:(DE-Juel1)IEK-4-20101013
000829726 980__ $$aI:(DE-Juel1)IEK-1-20101013
000829726 980__ $$aUNRESTRICTED
000829726 981__ $$aI:(DE-Juel1)IFN-1-20101013
000829726 981__ $$aI:(DE-Juel1)IMD-2-20101013