000829727 001__ 829727
000829727 005__ 20240711113741.0
000829727 0247_ $$2doi$$a10.1016/j.nme.2016.11.015
000829727 0247_ $$2Handle$$a2128/16315
000829727 0247_ $$2WOS$$aWOS:000417293300228
000829727 037__ $$aFZJ-2017-03365
000829727 082__ $$a333.7
000829727 1001_ $$0P:(DE-Juel1)130090$$aLitnovsky, A.$$b0$$eCorresponding author
000829727 245__ $$aSmart alloys for a future fusion power plant: First studies under stationary plasma load and in accidental conditions
000829727 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000829727 3367_ $$2DRIVER$$aarticle
000829727 3367_ $$2DataCite$$aOutput Types/Journal article
000829727 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1514899023_30395
000829727 3367_ $$2BibTeX$$aARTICLE
000829727 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829727 3367_ $$00$$2EndNote$$aJournal Article
000829727 520__ $$aIn case of an accident in the future fusion power plant like DEMO, the loss-of-coolant may happen simultaneously with air ingress into the vacuum vessel. The radioactive tungsten and its isotopes from the first wall may become oxidized and vaporized into the environment. The so-called “smart” alloys are under development to suppress the mobilization of oxidized tungsten. Smart alloys are aimed at adjusting their properties to environment. During regular operation, the preferential sputtering of alloying elements by plasma ions should leave almost pure tungsten surface facing the plasma. Under accidental conditions, the alloying elements in the bulk will form an oxide layer protecting tungsten from mobilization.The first direct comparative test of pure tungsten and smart alloys under identical plasma conditions was performed. Tungsten–chromium–titanium alloys were exposed simultaneously with tungsten samples to stationary deuterium plasma in linear plasma device PSI-2. The ion energy and the temperature of samples corresponded well the conditions at the first wall in DEMO. The accumulated fluence was 1.3 × 1026 ion/m2. The weight loss of pure tungsten samples after exposure was ΔmW = 1000–1150 µg. The measured weight loss of sputtered smart alloy sample ΔmSA = 1240µg corresponds very well to that of pure tungsten providing experimental evidence of good resistance of smart alloys to plasma sputtering.Plasma exposure was followed by the oxidation of alloys at 1000 °C accomplishing the first test of these new materials both in a plasma environment and under accidental conditions. Compared to pure tungsten, smart alloys featured the 3-fold suppression of oxidation. Plasma exposure did not affect the oxidation resistance of smart alloys. At the same time, the self-passivation of the protective layer did not occur, calling for further optimization of alloys.
000829727 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000829727 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000829727 588__ $$aDataset connected to CrossRef
000829727 7001_ $$0P:(DE-Juel1)161367$$aWegener, T.$$b1
000829727 7001_ $$0P:(DE-Juel1)166427$$aKlein, F.$$b2
000829727 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b3
000829727 7001_ $$0P:(DE-Juel1)162160$$aRasinski, M.$$b4
000829727 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b5
000829727 7001_ $$0P:(DE-Juel1)6784$$aUnterberg, B.$$b6
000829727 7001_ $$0P:(DE-Juel1)130188$$aVogel, M.$$b7
000829727 7001_ $$0P:(DE-Juel1)130069$$aKraus, S.$$b8
000829727 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b9$$ufzj
000829727 7001_ $$0P:(DE-HGF)0$$aGarcia-Rosales, C.$$b10
000829727 7001_ $$0P:(DE-HGF)0$$aCalvo, A.$$b11
000829727 7001_ $$0P:(DE-HGF)0$$aOrdas, N.$$b12
000829727 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2016.11.015$$gp. S2352179116301120$$p1363-1367$$tNuclear materials and energy$$v12$$x2352-1791$$y2017
000829727 8564_ $$uhttps://juser.fz-juelich.de/record/829727/files/1-s2.0-S2352179116301120-main.pdf$$yOpenAccess
000829727 8564_ $$uhttps://juser.fz-juelich.de/record/829727/files/1-s2.0-S2352179116301120-main.gif?subformat=icon$$xicon$$yOpenAccess
000829727 8564_ $$uhttps://juser.fz-juelich.de/record/829727/files/1-s2.0-S2352179116301120-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000829727 8564_ $$uhttps://juser.fz-juelich.de/record/829727/files/1-s2.0-S2352179116301120-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000829727 8564_ $$uhttps://juser.fz-juelich.de/record/829727/files/1-s2.0-S2352179116301120-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000829727 8564_ $$uhttps://juser.fz-juelich.de/record/829727/files/1-s2.0-S2352179116301120-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829727 909CO $$ooai:juser.fz-juelich.de:829727$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000829727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130090$$aForschungszentrum Jülich$$b0$$kFZJ
000829727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161367$$aForschungszentrum Jülich$$b1$$kFZJ
000829727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166427$$aForschungszentrum Jülich$$b2$$kFZJ
000829727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b3$$kFZJ
000829727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b4$$kFZJ
000829727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b5$$kFZJ
000829727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6784$$aForschungszentrum Jülich$$b6$$kFZJ
000829727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130188$$aForschungszentrum Jülich$$b7$$kFZJ
000829727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130069$$aForschungszentrum Jülich$$b8$$kFZJ
000829727 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich$$b9$$kFZJ
000829727 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000829727 9141_ $$y2017
000829727 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829727 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000829727 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000829727 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000829727 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829727 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000829727 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829727 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829727 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000829727 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000829727 9801_ $$aFullTexts
000829727 980__ $$ajournal
000829727 980__ $$aVDB
000829727 980__ $$aUNRESTRICTED
000829727 980__ $$aI:(DE-Juel1)IEK-4-20101013
000829727 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000829727 981__ $$aI:(DE-Juel1)IFN-1-20101013