001     829731
005     20240711113741.0
024 7 _ |a 10.1088/1741-4326/aa6816
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000400089200004
|2 WOS
024 7 _ |a altmetric:19509578
|2 altmetric
037 _ _ |a FZJ-2017-03369
082 _ _ |a 530
100 1 _ |a Litnovsky, A.
|0 P:(DE-Juel1)130090
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Smart tungsten alloys as a material for the first wall of a future fusion power plant
260 _ _ |a Vienna
|c 2017
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1493899305_17280
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere.New self-passivating 'smart' alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization.Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)–chroimum (Cr)–titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C–715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W–Cr–Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten.New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W–Cr–Ti systems and of pure W. The oxidation rate constant of W–Cr–Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wegener, T.
|0 P:(DE-Juel1)161367
|b 1
|u fzj
700 1 _ |a Klein, F.
|0 P:(DE-Juel1)166427
|b 2
|u fzj
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 3
|u fzj
700 1 _ |a Rasinski, M.
|0 P:(DE-Juel1)162160
|b 4
|u fzj
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 5
|u fzj
700 1 _ |a Unterberg, B.
|0 P:(DE-Juel1)6784
|b 6
|u fzj
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 7
|u fzj
700 1 _ |a Du, H.
|0 P:(DE-Juel1)145710
|b 8
|u fzj
700 1 _ |a Mayer, J.
|0 P:(DE-Juel1)130824
|b 9
|u fzj
700 1 _ |a Garcia-Rosales, C.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Calvo, A.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Ordas, N.
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1088/1741-4326/aa6816
|g Vol. 57, no. 6, p. 066020 -
|0 PERI:(DE-600)2037980-8
|n 6
|p 066020 -
|t Nuclear fusion
|v 57
|y 2017
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/829731/files/Litnovsky_2017_Nucl._Fusion_57_066020.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829731/files/Litnovsky_2017_Nucl._Fusion_57_066020.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829731
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161367
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)6784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130824
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21