001     829758
005     20240711113742.0
024 7 _ |a 10.1088/1741-4326/57/1/016040
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000390795500005
|2 WOS
037 _ _ |a FZJ-2017-03392
082 _ _ |a 530
100 1 _ |a Sakamoto, Ryuichi
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Surface morphology of tungsten exposed to helium plasma at temperatures below fuzz formation threshold 1073 K
260 _ _ |a Vienna
|c 2017
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1494240728_27450
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Impact of crystal orientation on the surface morphology of the helium plasma exposed tungsten has been investigated on the linear device PSI-2. A nanoscale undulating surface structure having a periodic arrangement is formed for temperatures below 1073 K, in contrast to the fuzz nanostructure formation in a higher temperature range. The crests of undulation align with the $\langle 1\,0\,0\rangle $ direction. The interval of the undulation is narrowest at the crystal grain of {1 1 0} surface. The interval becomes wider as the crystal grain surface tilts away from the {1 1 0} surface, and the undulating surface structure is not formed near the {1 0 0} surface. The height of undulations is $\sim 8$ nm, independently of the interval of the undulations, and it corresponds to the depth of the layer heavily damaged due to helium plasma exposure.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bernard, Elodie
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kreter, Arkadi
|0 P:(DE-Juel1)130070
|b 2
700 1 _ |a Yoshida, Naoaki
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1088/1741-4326/57/1/016040
|g Vol. 57, no. 1, p. 016040 -
|0 PERI:(DE-600)2037980-8
|n 1
|p 016040 -
|t Nuclear fusion
|v 57
|y 2017
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/829758/files/Sakamoto_2017_Nucl._Fusion_57_016040-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829758/files/Sakamoto_2017_Nucl._Fusion_57_016040-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829758
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130070
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21