000829759 001__ 829759
000829759 005__ 20240711113743.0
000829759 0247_ $$2doi$$a10.1088/1361-6587/59/2/025013
000829759 0247_ $$2ISSN$$a0032-1028
000829759 0247_ $$2ISSN$$a0368-3281
000829759 0247_ $$2ISSN$$a0741-3335
000829759 0247_ $$2ISSN$$a1361-6587
000829759 0247_ $$2ISSN$$a1879-2979
000829759 0247_ $$2WOS$$aWOS:000392202500001
000829759 0247_ $$2Handle$$a2128/25241
000829759 037__ $$aFZJ-2017-03393
000829759 082__ $$a530
000829759 1001_ $$0P:(DE-HGF)0$$aPrisiazhniuk, D.$$b0$$eCorresponding author
000829759 245__ $$aMagnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry
000829759 260__ $$aBristol$$bIOP Publ.$$c2017
000829759 3367_ $$2DRIVER$$aarticle
000829759 3367_ $$2DataCite$$aOutput Types/Journal article
000829759 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1494241181_27448
000829759 3367_ $$2BibTeX$$aARTICLE
000829759 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829759 3367_ $$00$$2EndNote$$aJournal Article
000829759 520__ $$aIn fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity ${{v}_{\bot}}$ profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the $E\times B$ drift and the phase velocity of turbulence ${{v}_{\bot}}={{v}_{E\times B}}+{{v}_{\text{ph}}}$ ) with Doppler reflectometry measurements and with neoclassical ${{v}_{E\times B}}$ calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2–3°). This additional angle decreases towards the core and at the edge.
000829759 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000829759 588__ $$aDataset connected to CrossRef
000829759 7001_ $$0P:(DE-Juel1)130075$$aKrämer-Flecken, A.$$b1
000829759 7001_ $$0P:(DE-HGF)0$$aConway, G. D.$$b2
000829759 7001_ $$0P:(DE-HGF)0$$aHappel, T.$$b3
000829759 7001_ $$0P:(DE-HGF)0$$aLebschy, A.$$b4
000829759 7001_ $$0P:(DE-HGF)0$$aManz, P.$$b5
000829759 7001_ $$0P:(DE-HGF)0$$aNikolaeva, V.$$b6
000829759 7001_ $$0P:(DE-HGF)0$$aStroth, U.$$b7
000829759 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/1361-6587/59/2/025013$$gVol. 59, no. 2, p. 025013 -$$n2$$p025013 -$$tPlasma physics and controlled fusion$$v59$$x1361-6587$$y2017
000829759 8564_ $$uhttps://juser.fz-juelich.de/record/829759/files/Prisiazhniuk_2017_Plasma_Phys._Control._Fusion_59_025013.pdf$$yRestricted
000829759 8564_ $$uhttps://juser.fz-juelich.de/record/829759/files/Prisiazhniuk_2017_Plasma_Phys._Control._Fusion_59_025013.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829759 8564_ $$uhttps://juser.fz-juelich.de/record/829759/files/Prisiazhniuk_Magnetic.pdf$$yPublished on 2017-01-03. Available in OpenAccess from 2018-01-03.
000829759 909CO $$ooai:juser.fz-juelich.de:829759$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000829759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130075$$aForschungszentrum Jülich$$b1$$kFZJ
000829759 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000829759 9141_ $$y2017
000829759 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829759 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829759 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000829759 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA PHYS CONTR F : 2015
000829759 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829759 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829759 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829759 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829759 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829759 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829759 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000829759 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829759 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829759 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000829759 9801_ $$aFullTexts
000829759 980__ $$ajournal
000829759 980__ $$aVDB
000829759 980__ $$aUNRESTRICTED
000829759 980__ $$aI:(DE-Juel1)IEK-4-20101013
000829759 981__ $$aI:(DE-Juel1)IFN-1-20101013