001     829759
005     20240711113743.0
024 7 _ |a 10.1088/1361-6587/59/2/025013
|2 doi
024 7 _ |a 0032-1028
|2 ISSN
024 7 _ |a 0368-3281
|2 ISSN
024 7 _ |a 0741-3335
|2 ISSN
024 7 _ |a 1361-6587
|2 ISSN
024 7 _ |a 1879-2979
|2 ISSN
024 7 _ |a WOS:000392202500001
|2 WOS
024 7 _ |a 2128/25241
|2 Handle
037 _ _ |a FZJ-2017-03393
082 _ _ |a 530
100 1 _ |a Prisiazhniuk, D.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry
260 _ _ |a Bristol
|c 2017
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1494241181_27448
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity ${{v}_{\bot}}$ profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the $E\times B$ drift and the phase velocity of turbulence ${{v}_{\bot}}={{v}_{E\times B}}+{{v}_{\text{ph}}}$ ) with Doppler reflectometry measurements and with neoclassical ${{v}_{E\times B}}$ calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2–3°). This additional angle decreases towards the core and at the edge.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Krämer-Flecken, A.
|0 P:(DE-Juel1)130075
|b 1
700 1 _ |a Conway, G. D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Happel, T.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lebschy, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Manz, P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nikolaeva, V.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Stroth, U.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1088/1361-6587/59/2/025013
|g Vol. 59, no. 2, p. 025013 -
|0 PERI:(DE-600)1473144-7
|n 2
|p 025013 -
|t Plasma physics and controlled fusion
|v 59
|y 2017
|x 1361-6587
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/829759/files/Prisiazhniuk_2017_Plasma_Phys._Control._Fusion_59_025013.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/829759/files/Prisiazhniuk_2017_Plasma_Phys._Control._Fusion_59_025013.pdf?subformat=pdfa
856 4 _ |y Published on 2017-01-03. Available in OpenAccess from 2018-01-03.
|u https://juser.fz-juelich.de/record/829759/files/Prisiazhniuk_Magnetic.pdf
909 C O |o oai:juser.fz-juelich.de:829759
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130075
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLASMA PHYS CONTR F : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21