000829763 001__ 829763
000829763 005__ 20240610121319.0
000829763 0247_ $$2Handle$$a2128/14540
000829763 0247_ $$2ISSN$$a1866-1777
000829763 020__ $$a978-3-95806-221-4
000829763 037__ $$aFZJ-2017-03397
000829763 041__ $$aEnglish
000829763 1001_ $$0P:(DE-Juel1)159411$$aBornhöfft, Manuel$$b0$$eCorresponding author$$gmale$$ufzj
000829763 245__ $$aTEM/STEM Investigations of Phase Change Materials for Non-volatile Memory Applications$$f- 2017-03-20
000829763 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek Verlag$$c2017
000829763 300__ $$aviii, 135 S.
000829763 3367_ $$2DataCite$$aOutput Types/Dissertation
000829763 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000829763 3367_ $$2ORCID$$aDISSERTATION
000829763 3367_ $$2BibTeX$$aPHDTHESIS
000829763 3367_ $$02$$2EndNote$$aThesis
000829763 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1495607459_15663
000829763 3367_ $$2DRIVER$$adoctoralThesis
000829763 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Information / Information$$v47
000829763 502__ $$aRWTH Aachen, Diss., 2017$$bDr.$$cRWTH Aachen$$d2017
000829763 520__ $$aPhase change materials are very interesting for future information technology because of their possibility to encode information in the readable difference of physical properties between the crystalline and the amorphous phase. Phase change materials are the dominant non-volatile memory material used in rewritable optical memory. This includes the current state of the art Blue-ray disc. Mobile computer platforms like smart mobile phones, tablets and netbooks are in need of energy and space efficient memory. Optical or magnetic recording media do not meet these needs anymore. Phase change materials used as non-volatile electronic memories are promising candidates as competition for flash memory. Flash memory is the current state of the art electronic non-volatile memory. In addition, non-volatile electronic applications as competition to Dynamic Random Access Memory (DRAM) are possible because of the high switching speeds of phase change materials. The key to the successful application of phase change materials as electronic non-volatile memory is the understanding of their physical properties and especially their switching kinetics. In the present work, transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used in a systematic manner to investigate the properties of a variety of phase change materials. The crystal growth velocities of grains growing in 30 nm thick amorphous layers of the phase change materials Ag$_{4}$In$_{3}$Sb$_{67}$Te$_{26}$ (AIST) and GeTe were measured directly by TEM bright field imaging. Grains of the measured materials were grown in a matrix of the amorphous phase by ex situ heating. This is done for sputtered as deposited material and material molten by laser which is quenched to room temperature. Furthermore we investigated lamellas of as deposited and melt quenched AIST and GeTe by fluctuation electron microscopy (FEM). The comparison of growth velocity and FEM data reveals that increasing medium range order (MRO) leads to a decrease in growth velocity. This is also related to different glassy states of the phase change materials. [...]
000829763 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000829763 650_7 $$xDiss.
000829763 8564_ $$uhttps://juser.fz-juelich.de/record/829763/files/Information_47.pdf$$yOpenAccess
000829763 8564_ $$uhttps://juser.fz-juelich.de/record/829763/files/Information_47.gif?subformat=icon$$xicon$$yOpenAccess
000829763 8564_ $$uhttps://juser.fz-juelich.de/record/829763/files/Information_47.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000829763 8564_ $$uhttps://juser.fz-juelich.de/record/829763/files/Information_47.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000829763 8564_ $$uhttps://juser.fz-juelich.de/record/829763/files/Information_47.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000829763 8564_ $$uhttps://juser.fz-juelich.de/record/829763/files/Information_47.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829763 909CO $$ooai:juser.fz-juelich.de:829763$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000829763 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829763 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000829763 9141_ $$y2017
000829763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159411$$aForschungszentrum Jülich$$b0$$kFZJ
000829763 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000829763 920__ $$lyes
000829763 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000829763 9801_ $$aFullTexts
000829763 980__ $$aphd
000829763 980__ $$aVDB
000829763 980__ $$aUNRESTRICTED
000829763 980__ $$abook
000829763 980__ $$aI:(DE-Juel1)PGI-5-20110106
000829763 981__ $$aI:(DE-Juel1)ER-C-1-20170209