000829764 001__ 829764
000829764 005__ 20220930130122.0
000829764 0247_ $$2doi$$a10.1038/s41598-017-03415-3
000829764 0247_ $$2Handle$$a2128/18145
000829764 0247_ $$2pmid$$apmid:28611438
000829764 0247_ $$2WOS$$aWOS:000403140000082
000829764 037__ $$aFZJ-2017-03398
000829764 041__ $$aEnglish
000829764 082__ $$a000
000829764 1001_ $$0P:(DE-HGF)0$$aDegtyarev, V. E.$$b0
000829764 245__ $$aFeatures of electron gas in InAs nanowires imposed by interplay between nanowire geometry, doping and surface states
000829764 260__ $$aLondon$$bNature Publishing Group$$c2017
000829764 3367_ $$2DRIVER$$aarticle
000829764 3367_ $$2DataCite$$aOutput Types/Journal article
000829764 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524035435_9444
000829764 3367_ $$2BibTeX$$aARTICLE
000829764 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829764 3367_ $$00$$2EndNote$$aJournal Article
000829764 520__ $$aWe present a study of electron gas properties in InAs nanowires determined by interaction between nanowire geometry, doping and surface states. The electron gas density and space distribution are calculated via self-consistent solution of coupled Schroedinger and Poisson equations in the nanowires with a hexagonal cross-section. We show that the density of surface states and the nanowire width define the spatial distribution of the electrons. Three configurations can be distinguished, namely the electrons are localized in the center of the wire, or they are arranged in a uniform tubular distribution, or finally in a tubular distribution with additional electron accumulation at the corners of the nanowire. The latter one is dominating for most experimentally obtained nanowires. N-type doping partly suppresses electron accumulation at the nanowire corners. The electron density calculated for both, various nanowire widths and different positions of the Fermi level at the nanowire surface, is compared with the experimental data for intrinsic InAs nanowires. Suitable agreement is obtained by assuming a Fermi level pinning at 60 to 100 meV above the conduction band edge, leading to a tubular electron distribution with accumulation along the corners of the nanowire.
000829764 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000829764 588__ $$aDataset connected to CrossRef
000829764 7001_ $$0P:(DE-HGF)0$$aKhazanova, S. V.$$b1
000829764 7001_ $$0P:(DE-Juel1)125576$$aDemarina, Nataliya$$b2$$eCorresponding author$$ufzj
000829764 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-017-03415-3$$gVol. 7, no. 1, p. 3411$$n1$$p3411$$tScientific reports$$v7$$x2045-2322$$y2017
000829764 8564_ $$uhttps://juser.fz-juelich.de/record/829764/files/redirect-nature.pdf$$yOpenAccess
000829764 8564_ $$uhttps://juser.fz-juelich.de/record/829764/files/redirect-nature.gif?subformat=icon$$xicon$$yOpenAccess
000829764 8564_ $$uhttps://juser.fz-juelich.de/record/829764/files/redirect-nature.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000829764 8564_ $$uhttps://juser.fz-juelich.de/record/829764/files/redirect-nature.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000829764 8564_ $$uhttps://juser.fz-juelich.de/record/829764/files/redirect-nature.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000829764 8564_ $$uhttps://juser.fz-juelich.de/record/829764/files/redirect-nature.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829764 8767_ $$82676054320$$92017-05-09$$d2017-05-05$$eAPC$$jZahlung erfolgt$$pSREP-17-01756A
000829764 909CO $$ooai:juser.fz-juelich.de:829764$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000829764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125576$$aForschungszentrum Jülich$$b2$$kFZJ
000829764 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000829764 9141_ $$y2017
000829764 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829764 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000829764 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000829764 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000829764 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000829764 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000829764 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000829764 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000829764 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829764 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829764 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829764 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829764 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829764 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829764 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829764 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829764 920__ $$lyes
000829764 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000829764 980__ $$ajournal
000829764 980__ $$aVDB
000829764 980__ $$aUNRESTRICTED
000829764 980__ $$aI:(DE-Juel1)PGI-2-20110106
000829764 980__ $$aAPC
000829764 9801_ $$aAPC
000829764 9801_ $$aFullTexts