000829765 001__ 829765
000829765 005__ 20240711113743.0
000829765 0247_ $$2doi$$a10.1088/1741-4326/aa60e4
000829765 0247_ $$2ISSN$$a0029-5515
000829765 0247_ $$2ISSN$$a1741-4326
000829765 0247_ $$2WOS$$aWOS:000398746000002
000829765 037__ $$aFZJ-2017-03399
000829765 082__ $$a530
000829765 1001_ $$0P:(DE-Juel1)145407$$aRack, M.$$b0$$eCorresponding author
000829765 245__ $$aA fluid-kinetic approach for 3D plasma edge transport in He plasma
000829765 260__ $$aVienna$$bIAEA$$c2017
000829765 3367_ $$2DRIVER$$aarticle
000829765 3367_ $$2DataCite$$aOutput Types/Journal article
000829765 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521100899_16841
000829765 3367_ $$2BibTeX$$aARTICLE
000829765 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829765 3367_ $$00$$2EndNote$$aJournal Article
000829765 520__ $$aThe fluid edge plasma Monte-Carlo code in three dimensions (EMC3) coupled to the kinetic (neutral particle) transport code EIRENE has demonstrated good performance in describing and even predicting the experimental trends of a wide range of stellarator and tokamak edge plasma configurations, under a certain range of relevant limiter and divertor scenarios. One major limitation so far, however, has been the restriction of EMC3 to hydrogen isotopes, although in the initial operation phase of the newly built, optimised stellarator Wendelstein 7-X, (and probably also in ITER during its initial low activation phase) helium plasmas are used. An approach is presented on how to extend EMC3 and expand the use of EIRENE features in plasma edge simulations for helium edge plasmas. The approach is based on modelling He++ as a fluid, calculated by the plasma fluid code EMC3, and treating helium atoms and He+ ions as particles, calculated by the kinetic transport code EIRENE. The applicability, current limitations and future directions of this hybrid approach will be discussed. The first simulation results for Wendelstein 7-X helium edge plasma conditions demonstrate the feasibility of the present computational model.
000829765 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000829765 536__ $$0G:(DE-Juel1)jiek42_20150501$$aPredictive EMC3-EIRENE modelling and diagnostic interpretation for Wendelstein 7-X’s first campaigns (jiek42_20150501)$$cjiek42_20150501$$fPredictive EMC3-EIRENE modelling and diagnostic interpretation for Wendelstein 7-X’s first campaigns$$x1
000829765 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000829765 588__ $$aDataset connected to CrossRef
000829765 7001_ $$0P:(DE-Juel1)5006$$aReiter, D.$$b1
000829765 7001_ $$0P:(DE-Juel1)6957$$aHasenbeck, F.$$b2
000829765 7001_ $$0P:(DE-Juel1)6982$$aFeng, Y.$$b3
000829765 7001_ $$0P:(DE-HGF)0$$aBörner, P.$$b4
000829765 7001_ $$0P:(DE-HGF)0$$aWeger, A.-C.$$b5
000829765 7001_ $$0P:(DE-Juel1)167468$$aCosfeld, J.$$b6
000829765 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/aa60e4$$gVol. 57, no. 5, p. 056011 -$$n5$$p056011 -$$tNuclear fusion$$v57$$x1741-4326$$y2017
000829765 8564_ $$uhttps://juser.fz-juelich.de/record/829765/files/Rack_2017_Nucl._Fusion_57_056011.pdf$$yRestricted
000829765 8564_ $$uhttps://juser.fz-juelich.de/record/829765/files/Rack_2017_Nucl._Fusion_57_056011.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829765 909CO $$ooai:juser.fz-juelich.de:829765$$pVDB
000829765 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145407$$aForschungszentrum Jülich$$b0$$kFZJ
000829765 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5006$$aForschungszentrum Jülich$$b1$$kFZJ
000829765 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6957$$aForschungszentrum Jülich$$b2$$kFZJ
000829765 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167468$$aForschungszentrum Jülich$$b6$$kFZJ
000829765 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000829765 9141_ $$y2017
000829765 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829765 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000829765 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2015
000829765 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829765 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829765 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829765 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829765 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829765 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829765 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829765 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829765 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829765 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000829765 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000829765 980__ $$ajournal
000829765 980__ $$aVDB
000829765 980__ $$aI:(DE-Juel1)IEK-4-20101013
000829765 980__ $$aI:(DE-82)080012_20140620
000829765 980__ $$aUNRESTRICTED
000829765 981__ $$aI:(DE-Juel1)IFN-1-20101013