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The intramolecular dynamics of flexible and semiflexible polymers in response to active noise is
studied theoretically. The active noise may either originate from interactions of a passive polymer
with a bath of active Brownian particles or the polymer itself is comprised of active Brownian particles.
We describe the polymer by the continuous Gaussian semiflexible-polymer model, taking into account
the finite polymer extensibility. Our analytical calculations predict a strong dependence of the polymer
dynamics on the activity. In particular, active semiflexible polymers exhibit a crossover from a bending
elasticity-dominated dynamics at weak activity to that of flexible polymers at strong activity. The end-
to-end vector correlation function decays exponentially for times longer than the longest polymer
relaxation time. Thereby, the polymer relaxation determines the decay of the correlation function for
long and flexible polymers. For shorter and stiffer polymers, the relaxation behavior of individual active
Brownian particles dominates the decay above a certain activity. The diffusive dynamics of a polymer is
substantially enhanced by the activity. Three regimes can be identified in the mean square displacement
for sufficiently strong activities: an activity-induced ballistic regime at short times, followed by a
Rouse-type polymer-specific regime for any polymer stiffness, and free diffusion at long times, again
determined by the activity. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4981012]

I. INTRODUCTION

Active matter systems exhibit a wide spectrum of fas-
cinating phenomena, such as the activity-driven phase sep-
aration or large-scale collective motion, emerging from the
intrinsic nonequilibrium character of their constituents.1–9

Thereby, the agents of active matter convert either internal
chemical energy into directed motion or utilize energy from
the environment.10 Prototype examples of active matter are
omnipresent in biology and range from the cytoskeleton in
living cells2,5,11–18 to algae, sperm, and bacteria.2,6,19 More-
over, various concepts have been put forward for the design
of synthetic active particles.7,20–25 Pure active systems show
already fascinating nonequilibrium phenomena, but mixtures
of active and passive objects26 exhibit even more astonish-
ing features, such as collective interface propagation,27 and
provide a route to switchable self-assembly28 and microrhe-
ological measurements.29 Moreover, an enhanced effective
tracer motion has been observed in active suspensions.30,31

An eminent example of a mixed active-passive system is an
eukaryotic cell with the active cytoskeleton and an embed-
ded large variety of passive colloidal and polymeric objects.
Here, the active matrix modifies the structural and dynamical
properties of the passive objects to a yet not fully explored
extent. Specifically, an enhanced random motion of tracer
particles, compared with the thermal Brownian motion, has
been observed.32 Other experiments indicate an influence of
active forces on the dynamics of polymers such as those by
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microtubuli33 or actin filaments34 on the motion of chromoso-
mal loci in simple organisms35,36 or the chromatin dynamics in
eukaryotes.37

In this article, we study the dynamical properties of linear
active semiflexible polymers. In particular, we want to shed
light onto the influence of activity on their internal dynam-
ics. A major goal is to achieve analytical results; therefore, we
adopt the Gaussian semiflexible polymer model38–40 exposed
to active noise.10,41–44 As shown in Ref. 10, the activity can
be interpreted in two ways (cf. Fig. 1). On the one hand, our
polymer can be considered as comprised of active monomers,
e.g., active Brownian particles (ABPs).10,44–47 On the other
hand, the active force may originate from interactions with
uncorrelated surrounding ABPs; hence, the polymer corre-
sponds to a passive polymer dissolved in an active bath.42,43,48

Thereby, ABPs are a well established model to study active
matter.4,20,49–55

The connectivity of active particles, as in linear
chains10,44,46–48,56–67 or other arrangements,68 gives rise to
particular interesting conformational and dynamical features.
Examples are provided in Refs. 10, 42, 48, and 69, where
conformations of passive polymers embedded in a bath of
active Brownian particles are analysed. Specifically, flexible
polymers swell with increasing activity, whereas semiflexible
filaments shrink with increasing activity, i.e., activity leads
to a softening of the polymers, and only for large activities
the semiflexible polymers swell again, interestingly in the
same manner as flexible polymers.10 Shrinkage has also be
observed in simulation studies of two-dimensional active self-
avoiding flexible polymers,45 which has been attributed to the
activity-induced encaging by neighboring ABPs and may thus
be particular for two-dimensional ABPs. Moreover, activity
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FIG. 1. Illustration of (a) a polymer comprised of ABP monomers in a
solution of passive particles and (b) a passive polymer in a solution of ABPs.

significantly affects the polymer kinetics, which is reflected in
an accelerated looping dynamics.42,57

The dynamics of dumbbells44 and linear41,43,58,70 chains
of ABPs have been studied analytically. In Ref. 58, the active
force is transverse to the polymer contour, Refs. 43 and 70 con-
sider Rouse and Zimm type models, and in Ref. 41 a Rouse
polymer embedded in a viscoelastic medium is studied apply-
ing the formalism of fractional derivatives. In all these cases,
a fundamental polymer property, namely, the finite contour
length and, hence, the finite polymer extensibility has been
neglected.

The considerations of this article reach beyond these pre-
vious studies by specifically accounting for the finite polymer
extensibility. As we have shown in Ref. 10, finite extensibility
drastically changes the polymer conformational properties and
the relaxation times, in particular for semiflexible polymers.
As discussed above, semiflexible polymers shrink over a wide
range of activities compared to the passive case. Moreover, the
relaxation times decrease with increasing activity, i.e., dynam-
ical processes are accelerated. Our calculations show that this
is a consequence of the constant contour length of a polymer,
which implies that this constraint has to be taken into account
in analytical considerations.10 Here, we will discuss specifi-
cally the relaxation behavior of semiflexible active polymers
as well as various mean square displacements (MSDs). The
relaxation behavior depends significantly on the number of
active sites along the polymer contour. For a large number
of active sites, the decay of the end-to-end vector correla-
tion function is determined by the relaxation times of the
polymer independent of its stiffness. In the case of a small
number of active sites, a crossover follows from a decay deter-
mined by the polymer relaxation times to a decay governed
by the rotational diffusion of an individual ABP. As already
noted earlier,41,42,58 we find a substantially enhanced diffu-
sion of the active polymers. Three regimes can be identified,
each determined by the activity: a ballistic regime for short
times, a Rouse-type polymer specific regime for intermediate
times, and free diffusion for long times. Thereby, flexible and

semiflexible polymers exhibit the same time dependence
(
√

t) in the intermediate regime as a consequence of the
activity-induced softening of stiff polymers.

The paper is organized as follows. Section II describes
the model of the active polymer and presents the equations
of motion and their solution. Moreover, the dependence of
the mode numbers and relaxation times on the activity is
addressed. In Sec. III, results for the polymer end-to-end vector
correlation function are presented for various polymer lengths
and stiffness. Polymer mean square displacements are dis-
cussed in Sec. IV. Section V summarizes the major results
of our study. The Appendix presents more detailed analytical
calculations and results.

II. ACTIVE POLYMER MODEL
A. Equation of motion

We utilize the Gaussian semiflexible polymer
model,38,71,72 where the polymer is considered as a continuous,
differentiable space curve r(s, t), with the contour coordinate
s along the linear chain of length L (−L/2 < s < L/2) and
the time t. The equation of motion of r(s, t) is given by the
Langevin equation10,40,73–76

∂

∂t
r(s, t) = v(s, t) +

1
γ
Γ(s, t)

+
kBT
γ

(
2λ

∂2

∂s2
r(s, t) − ε

∂4

∂s4
r(s, t)

)
, (1)

with the boundary conditions
[
2λ

∂

∂s
r(s, t) − ε

∂3

∂s3
r(s, t)

]

s=±L/2
= 0, (2)

[
2λ0

∂

∂s
r(s, t) ± ε

∂2

∂s2
r(s, t)

]

s=±L/2
= 0. (3)

The influence of the activity is captured by assigning the veloc-
ity v(s, t) to the point r(s, t). Thereby, v is a non-Markovian but
Gaussian stochastic process with zero mean and the correlation
function6,8,10,43,44〈

v(s, t) · v(s′, t ′)
〉
= v2

0 le−γR |t−t′ |δ(s − s′). (4)

Here, v0 is the propulsion velocity and γR the damping factor
for the rotational motion of an ABP. The latter is related to
the rotational diffusion coefficient DR of a passive particle via
γR = (d−1)DR, where d denotes the dimension. In this article,
we restrict ourselves to three dimensions. More details on the
derivation of Eq. (4) are presented in Ref. 10. Note that we
introduce the length scale l in Eq. (4) in the continuum repre-
sentation of the semiflexible polymer. As discussed in Ref. 10,
in a touching-bead model of a discrete polymer, l represents
the bead diameter and bond length. Hence, the ratio L/l can be
interpreted as the number of uniformly distributed active sites
along the polymer. In the following, if not indicated differently,
we consider a polymer with L/l = 103. The colored noise v(s, t)
may originate from two sources. On the one hand, the polymer
may be comprised of active Brownian particles, which change
their orientation and propagation direction in a diffusive man-
ner independent of their translational motion.6–8,10,50,51,53 On
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the other hand, the passive polymer may be embedded in a
solution of such active Brownian particles and the interaction
between them and the polymer is described by the colored
noise of Eq. (4) (cf. Fig. (1)).6,10,42–44,69,77

The stochastic process Γ(s, t) for the translational motion
of r(s, t) is assumed to be stationary, Markovian, and Gaussian
with zero mean and the second moments,〈

Γα(s, t)Γβ(s′, t ′)
〉
= 2γkBTδαβδ(s − s′)δ(t − t ′), (5)

where T is the temperature, kB the Boltzmann constant, γ the
translational friction coefficient per length, andα, β ∈ {x, y, z}.
The translational friction coefficient is related to the trans-
lational diffusion coefficient DT of an individual ABP via
DT = kBT/γl.

The terms in the brackets of Eq. (1) represent the entropic
degrees of freedom, with the stretching coefficient λ, and
restrictions by an intrinsic bending stiffness, with the bend-
ing coefficient ε . The latter, together with the coefficient λ0,
are determined via constraints for bond lengths and bending
restrictions.39,78 Adopting the results for calculations of con-
tinuous semiflexible polymers exposed to external forces,39

we set ε = 3/4p and λ0 = 3/4 for a polymer in three dimen-
sions, where p = 1/2lp and lp is the persistence length. Within
a mean-field approach for the bond constraints, we impose the
global condition10

∫ L/2

−L/2

〈(
∂r(s, t)
∂s

)2〉
ds = L (6)

to capture the inextensibility of a polymer and to determine
the stretching coefficient (Lagrangian multiplier) λ.

B. Solution of equation of motion:
Eigenfunction expansion

The solution of the linear equation of motion (1) follows
by an eigenfunction expansion10,73,79

r(s, t) =
∞∑

n=0

χn(t)ϕn(s), (7)

with the eigenfunctions ϕn(s) of the equation

εkBT
d4

ds4
ϕn(s) − 2λkBT

d2

ds2
ϕn(s) = ξnϕn(s) (8)

and the mode amplitudes χn(t). Explicitly, the eigenfunctions
read73,79

ϕ0 =

√
1
L

, (9)

ϕn(s) =

√
cn

L

(
ζ ′n

sinh ζ ′ns

cosh ζ ′nL/2
+ ζn

sin ζns
cos ζnL/2

)
, n odd, (10)

ϕn(s) =

√
cn

L

(
ζ ′n

cosh ζ ′ns

sinh ζ ′nL/2
− ζn

cos ζns
sin ζnL/2

)
, n even, (11)

with

ζ ′2n − ζ
2
n =

2λ
ε

, ξ0 = 0 , ξn = kBT (εζ4
n + 2λζ2

n ). (12)

The constants cn are normalization coefficients and the wave
numbers ζn and ζ ′n are specified by the boundary conditions
Eqs. (2) and (3). ϕ0 accounts for the polymer’s translational

motion. ξn are the eigenvalues, which depend on the mode
number and, in particular, the stretching coefficient λ, which
itself is a function of activity.10,44

Due to the odd and even parity eigenfunctions (10) and
(11), the boundary conditions (2) and (3) lead to indepen-
dent even and odd transcendental equations for the mode
numbers.73 As for passive polymers, the relation

(2n − 1)π/2 ≤ ζnL ≤ nπ, n > 1 (13)

holds, with ζn values between the wave numbers of a semi-
flexible (ζnL = (2n − 1)π/2, pL → 0) and a flexible (ζnL
= nπ, pL → ∞) polymer. Note that ζ0 = 0 is a solution
corresponding to the translation of the whole polymer. Since
the boundary conditions depend on λ, the wave numbers are
functions of activity and are therefore different from those
of passive polymers. Numerical results for the first few wave
numbers are presented in Fig. 2 (cf. discussion in Sec. II C).

The stationary-state solution of the mode amplitudes is

χ0(t) = χ0(0) +
∫ t

0

(
v0(t ′) +

1
γ
Γ0(t ′)

)
dt ′, (14)

χn(t) =
∫ t

−∞

e−(t−t′)/τn

(
vn(t ′) +

1
γ
Γn(t ′)

)
dt ′. (15)

vn(t) and Γn(t) are the normal mode amplitudes of the velocity
v(s, t) and stochastic force Γ(s, t), respectively, in terms of the
eigenfunctions ϕn(s), analogously to Eq. (7), and τn are the
relaxation times10 (n > 0),

τn =
γ

ξn
=

γ

kBT (εζ4
n + 2λζ2

n )
. (16)

Here, a remark on the choice of the initial time is in order. Since
the stochastic process (4) is non-Markovian, the solution of the
mode amplitudes (Eqs. (14) and (15)) depends on the initial
condition. We focus on the dynamics in the stationary state
only, with the polymer exposed to the random forces from a
starting time t0 → −∞ on.

FIG. 2. The first four wave numbers ζn (n > 0, bottom to top) as a func-
tion of the persistence length (pL) for the Péclet numbers Pe = 0 (solid), Pe
= 3 (dashed), Pe = 10 (dashed-dotted), and Pe = 30 (dotted). In the limit
pL → ∞ (flexible polymer), the asymptotic values ζnL = nπ are assumed,
whereas for pL → 0 (semiflexible polymer), the values ζnL = (2n−1)π/2 are
approached (n > 1). ζ1 converges to zero in the rodlimit pL → 0. The ratio L/l
= 103.
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C. Stretching coefficient λ

Inserting the eigenfunction expansion (7) in Eq. (6) yields
the equation for the stretching coefficient λ,

∞∑
n=1

*
,

3kBT
γ

τn +
v2

0 l

1 + γRτn
τ2

n
+
-

∫ L/2

−L/2

(
dϕn(s)

ds

)2

ds = L. (17)

An approximate equation for a flexible polymer is provided
in Ref. 10. A more precise approximation is presented in the
Appendix. The relaxation times (16) depend on λ, both explic-
itly and implicitly via the wave numbers. The simultaneous
solution of Eq. (17) and the equations for the wave numbers
yields ζn and λ. Numerical solutions of these equations for
the wave numbers and the stretching coefficient are provided
in Figs. 2 and 3, respectively, for various persistence lengths,
i.e., pL = L/2lp values, and Péclet numbers Pe. Here, the Péclet
number

Pe =
v0

DRl
(18)

is introduced to characterize the activity, where DR is the rota-
tional diffusion coefficient of an ABP. Moreover, we introduce
the ratio

∆ =
DT

DRl2
, (19)

between the translational and rotational diffusion coefficients.
In the case of a thermal system, the two diffusion coefficients
are related, with ∆ = 1/3 for a spherical colloid of diameter l
in solution. Microswimmers may exhibit a faster than thermal
diffusive rotational dynamics due to, e.g., tumbling motion.6

If not otherwise indicated, we will consider the ratio ∆ = 0.3
in the following.

The wave numbers ζn exhibit a pronounced dependence
on Pe, specifically, the crossover from semiflexible to flexible
polymer behavior is affected, with a shift of the inflection point
to smaller pL values with increasing Pe (cf. Fig. 2). Hence, the
flexible modes dominate the polymer dynamics even for small
pL values at large Péclet numbers.

As already discussed in Ref. 10, the scaled stretching coef-
ficient µ = 2λ/3p depends strongly on the Péclet number and
increases with increasing Pe as shown in Fig. 3. Thereby, the
actual dependence on Pe varies with the persistence length.

FIG. 3. Scaled stretching coefficient µ = 2λ/3p as a function of the Péclet
number and the persistence length lp (pL = L/2lp). The colors indicate the
value of µ.

The increase of λ with increasing Pe reflects the tendency of
the active force to stretch the polymer, which is compensated
by an increase of the mean bond force in order to maintain the
constant average contour length in our approach.

D. Relaxation times

The polymer relaxation times τn follow via Eq. (16) from
the wave numbers ζn. Figure 4 illustrates the dependence of τn

on the persistence length and Péclet number for various modes.
Analogous to the wave numbers, the τn (n > 1) exhibit three
distinctive regimes. In the limit of flexible polymers (pL→∞),
the relaxation times are proportional to L2/n2 corresponding
to those of the Rouse model,80 more precisely,

τn =
τR

µn2
, (20)

with the Rouse relaxation time τR = γL2/3πkBTp.10 For stiff
polymers (pL → 0), the bending modes dominate, resulting in
relaxation times proportional to L4/(2n�1)4 (n > 1).76,81 In the
intermediate regime, both bending and stretching contribute to
the relaxation times, with a pronounced influence of activity.
The latter leads to a shift of the maxima of the curves to smaller
pL values. This again reflects the decreasing importance of
polymer stiffness on the relaxation behavior with increasing
Pe. Interestingly, the relaxation times develop a plateau-like
regime over several orders of pL values. Here, the respective
τn are essentially independent of the persistence length. More-
over, the plateau values of τ1 for pL → 0, which correspond to
the rotational diffusive motion of a rod-like polymer, decrease
with increasing Pe. A more extensive discussion of the depen-
dence of the longest relaxation time on the Péclet number is
presented in Ref. 10. The most important message here is that
the relaxation times significantly depend on the activity of the
polymer due to the finite extensibility of a polymer, an aspect
often neglected in theoretical studies.

E. Correlation functions

The characterisation of the polymer dynamics typically
requires correlation functions of the normal-mode amplitudes
χn(t). Using Eqs. (4) and (5), we can calculate the necessary

FIG. 4. The first three relaxation times τn (n = 1 (solid), n = 2 (dashed), n = 3
(dotted)) as a function of pL for the Péclet numbers Pe = 0 (blue), Pe = 1
(green), Pe = 3 (red), Pe = 10 (cyan), and Pe = 30 (purple). For the flexible
polymer (pL → ∞) τn ∼ L2/n2 (n ≥ 1), whereas for a semiflexible polymer
(pL → 0) τn ∼ L4/(2n − 1)4 (n > 1). The plateau value of τ1 for pL → 0
decreases with increasing Péclet number.10
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correlation functions for the amplitudes Γn(t) and vn(t) of the
eigenfunction expansion of the random variables v(s, t) and
Γ(s, t) in terms of ϕn. This yields zero odd moments and the
second moments,〈

vn(t) · vm(t ′)
〉
= v2

0 le−γR |t−t′ |δnm, (21)〈
Γn(t) · Γm(t ′)

〉
= 6γkBTδ(t − t ′)δnm. (22)

The correlation functions of the normal-mode amplitudes are
given by

〈
χn(t) · χm(t ′)

〉
= δnme−(t+t′)/τn *

,

∫ t

−∞

∫ t′

−∞

e(t1+t2)/τn

× 〈vn(t1) · vn(t2)〉 dt1dt2

+
∫ t

−∞

∫ t′

−∞

1

γ2
〈Γn(t1) · Γn(t2)〉 dt1dt2+

-

= δnm
*
,

3kBTτn

γ
e−|t−t′ |/τn +

v2
0 lτ2

n

1− (γRτn)2

×
[
e−γR |t−t′ | − γRτne−|t−t′ |/τn

] +
-

. (23)

The last equality follows by the insertion of Eqs. (21) and (22)
and evaluation of the integrals.10,43,44

III. POLYMER END-TO-END VECTOR
CORRELATION FUNCTION

The correlation function 〈re(t) · re(0)〉 of the polymer end-
to-end vector re = r(L/2) − r(−L/2) is given by

〈re(t) · re(0)〉 = 4
∞∑

n=1

〈
χ2n−1(t) · χ2n−1(0)

〉
ϕ2

2n−1(L/2) (24)

in terms of the normal-mode amplitudes (Eq. (23)), where only
odd terms contribute. Inserting Eq. (23), we find explicitly

〈re(t) · re(0)〉 =
∞∑

n=1

ϕ2
2n−1(L/2)

[
4L3

ξ̂2n−1
e−t/τ2n−1

+
Pe2l3

9∆2 ξ̂2
2n−1l6/(4L6) − 1

×

(
e−γRt −

2L3

3∆l3 ξ̂2n−1
e−t/τ2n−1

)]
, (25)

where ξ̂n = pLµ(ζnL)2 + (ζnL)4/(4pL). The decay of the cor-
relation function is governed by two processes, the Brownian
motion of the active force (γRt) and the polymer dynamics
(t/τn).

In the limits γRτ1 � 1 and t/τ1 > 1, the correlation
function exhibits the asymptotic behavior

〈re(t) · re(0)〉 =
L3

ξ̂1
e−t/τ1

(
4 +

2Pe2

3∆

)
ϕ2

1(L/2) ∼
〈
r2

e

〉
e−t/τ1.

(26)

For flexible polymers in general, and in particular in the case of
stiff polymers for sufficiently large Péclet numbers, where the

Rouse modes dominate over the bending modes, the condition
γRτ1 � 1 is equivalent to

Pe �

(
L
l

)3/2

, (27)

when we use the expressions of Eq. (32) or (33) of Ref. 10.
Hence, for a large number L/l of active sites along a polymer or
small Péclet numbers, the correlation function is determined by
the relaxation times of the polymer. Corresponding correlation
functions are displayed in Fig. 5 for flexible and semiflexible
polymers. Evidently, the decay is exponential for t/τ1 > 1 and
τ1 is the dominant relaxation time. For flexible polymers, the
correlation function increases monotonically with increasing
Péclet number for all times t/τ1, which reflects the mono-
tonic increase of the mean square end-to-end distance

〈
r2

e

〉
with

increasing Pe.10 This no longer applies to semiflexible poly-
mers, where a nonmonotonic dependence on Pe is observed
for the correlation function (cf. Fig. 5(b) for Pe = 103). Again,
this is in agreement with the nonmonotonic behavior of

〈
r2

e

〉
as a function of the Péclet number. At short times (t/τ1 � 1),
various modes and the rotational diffusion (γR) contribute to
the decay of the correlation function, as illustrated in Fig. 5.

In the limit γRτ1 � 1, the decay of the correlation function
is determined by the rotational diffusion of an individual ABP

FIG. 5. End-to-end vector correlation functions of (a) flexible polymers with
pL = 103 and the Péclet numbers Pe = 0 (black), 102 (blue), 5 × 102 (green),
and 103 (red), and (b) semiflexible polymers with pL = 10�2 and Pe = 0
(black), 2 × 101 (blue), 102 (green), and 103 (red). The time is scaled by the
longest polymer relaxation time. The insets in the upper right corners show the
dependence of the longest relaxation time on the Péclet number. The insets
in the lower left corners highlight the exponential decay of the correlation
function.
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FIG. 6. End-to-end vector correlation functions of flexible polymers with pL
= L/l = 50 for the Péclet numbers Pe = 0 (blue), 5 × 101 (green), 102 (red),
2.5 × 102 (cyan), 5 × 102 (purple), 103 (yellow), and 5 × 103 (orange). The
time is scaled by the longest polymer relaxation time as displayed in the inset.
The dashed lines indicate the limits of Eqs. (26) and (29) for low and high
Péclet numbers, respectively.

and it is given by (cf. Eq. (25))

〈re(t) · re(0)〉 =
4Pe2L3

9∆2

(
L
l

)3

e−γRt
∞∑

n=1

ϕ2
2n−1(L/2)

ξ̂2n−1
, (28)

which reduces to

〈re(t) · re(0)〉 =
Pe2L2

108(∆pLµ)2

(
L
l

)3

e−γRt (29)

when flexible modes dominate.
Figure 6 shows correlation functions of a (short) flexi-

ble polymer with L/l = 50 active elements and various Péclet
numbers. For this choice, condition (27) is violated at larger
Pe. Correspondingly, we observe a gradual crossover from the
dependence 〈re(t) · re(0)〉 ∼ e−t/τ1 at small Péclet numbers to
the decay 〈re(t) · re(0)〉 ∼ e−γRt for large Péclet numbers. The
absence or presence of the crossover strongly depends on L/l
(cf. Eq. (27)). Hence, for long polymers, where pL = L/l � 1,
we observe only the decay 〈re(t) · re(0)〉 ∼ e−t/τ1 as long as
Pe . 103. In the limiting case of an active dumbbell, where
L/l = 2, the decay of the correlation function is already for
rather small Pe governed by the rotational diffusion of the
monomers.44

As discussed in Sec. II D and Ref. 10, the longest poly-
mer relaxation time τ1 depends strongly on activity. Hence,
a part of the activity dependence of the correlation function
is absorbed in the scaled time t/τ1 in Figs. 5 and 6. In con-
trast, Fig. 7 presents correlation functions as a function of
γRt for various Péclet numbers. It is obvious that the correla-
tion function decays faster for larger activities. Thereby, the
correlation function of semiflexible polymers decays slower
than that of flexible polymers for small-to-moderate Péclet
numbers, but, in the limit of large Péclet numbers, the decay
rates become equal. This once again reflects the transition of
a semiflexible to a flexible polymer behavior with increasing
activity.10

FIG. 7. End-to-end vector correlation functions of a flexible (pL = 103, solid)
and semiflexible (pL = 10�1, dashed) polymers for the Péclet numbers Pe = 0
(blue), 5 × 101 (green), 102 (red), 2.5 × 102 (cyan), 5 × 102 (purple), and 103

(yellow). The time is scaled by the coefficient γR = 2DR of the rotational
Brownian motion.

IV. POLYMER MEAN SQUARE DISPLACEMENT

The mean square displacement (MSD) of the point r(s, t)
is given by〈
∆r2(s, t)

〉
=

〈
(r(s, t) − r(s, 0))2

〉
= ϕ2

0

〈(
χ0(t) − χ0(0)

)2
〉

+
∞∑

n=1

ϕ2
n(s)

〈(
χn(t) − χn(0)

)2
〉

(30)

in terms of the mode amplitudes. The first term of the right-
hand side is the mean square displacement of the center-of-
mass

〈
∆r2

cm(t)
〉

of the polymer and the second term is the
displacement of the point r(s, t) with respect to the center of
mass. Insertion of the correlation functions (23) yields〈
∆r2(s, t)

〉
=

〈
∆r2

cm(t)
〉

+
∞∑

n=1

ϕ2
n(s)

[
6kBTτn

γ

(
1 − e−t/τn

)
+

2v2
0 lτ2

n

1 + γRτn

(
1 −

e−γRt − γRτne−t/τn

1 − γRτn

), (31)

with the center-of-mass mean square displacement10

〈
∆r2

cm(t)
〉
=

6kBT
γL

t +
2v2

0 l

γ2
RL

(
γRt − 1 + e−γRt

)
. (32)

This expression is similar to that of a single active Brownian
particle.6,8,20,44 As a generalization, the total polymer friction
coefficient γL appears in the Brownian motion of the cen-
ter of mass, and the active term contains L/l, the number of
active sites along the polymer contour.10 The latter can be
understood as follows. The center-of-mass motion of a poly-
mer is independent of internal forces. Hence, on the level of
the center-of-mass, we are left with L/l independent ABPs. In
the limit t → ∞, their MSD is proportional to v2

0/(L/l), with
the fluctuation

√
l/L in the number of active sites due to the

Gaussian nature of the process.
MSDs of flexible and semiflexible polymers are dis-

played in Fig. 8 for various Péclet numbers. To obtain a
site-independent displacement, 〈∆r2(s, t)〉 is averaged over s,
i.e., 〈∆r2(t)〉 = ∫ 〈∆r2(s, t)〉ds/L is considered. For a passive
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FIG. 8. Mean square displacements of (a) a flexible polymer with pL = 103

and (b) a semiflexible polymer with pL = 1. The Péclet numbers are Pe = 0
(blue), 3×100 (green), 2×101 (red), 102 (cyan), and 5×102 (purple). The time
is scaled by the factor γR = 2DR of the rotational diffusive movement. The
dashed lines correspond to the MSDs in the polymer center-of-mass reference
frame.

flexible polymer (Fig. 8(a)), we recover the well-known Rouse-
dependence 〈∆r2(t)〉 ∼

√
t for t/τ1 � 1 and a crossover to

free diffusion for t/τ1 � 1.80 Activity implies a significantly
enhanced diffusive motion as already reported before.41,42,58

At short times, a specific ballistic regime appears, which is
already well pronounced for Pe ≈ 20. For times γRt ≈ 1, the
MSD crosses over to a Rouse-type regime (

√
t) determined

by the internal polymer dynamics. Finally, the center-of-mass
motion dominates the MSD with a linear increase in time.
Thereby, the crossover time γRt from the ballistic to the Rouse-
type regime shifts to smaller values with increasing Péclet
number, a consequence of the decreasing relaxation times τn

with increasing Pe (cf. Fig. 4 and discussion in Ref. 10). Simul-
taneously, the polymer characteristic regime ∼

√
t becomes

shorter and vanishes for large Péclet numbers. This shortening
is a consequence of the finite contour length and is completely
missing in a bare Rouse-model-type approach.41–43,58,70 The
finite contour length leads to an activity-depending relax-
ation time and, hence, a qualitative different dynamical
behavior.

The MSD of passive semiflexible polymers (Fig. 8(b))
exhibits the well-known 〈∆r2(t)〉 ∼ t3/4 dependence for t/τ1

� 1.71,76,82–85 As for flexible polymers, activity substantially
enhances the diffusive motion. We observe the same sequence
of time regimes as for flexible polymers: ballistic motion for
γRt . 1 followed by a regime determined by the internal
dynamics of the polymer and, finally, the overall diffusion of
the polymer for t/τ1 � 1. However, there is a remarkable

feature in the intermediate regime 1 < γRt < γRτ1. Here,
at sufficiently large Péclet numbers, the MSD of semiflex-
ible polymers exhibits the

√
t-dependence characteristic for

flexible polymers. This is a consequence of the finite contour
length of the polymer captured in the Pe dependence of the
stretching coefficient λ. The crossover of the relaxation times
from bending-mode dominated to Rouse-mode dominated of
flexible polymers gives rise to the appearing change in the
sub-diffusive behavior. Such a change does not appear for the
stretching coefficient µ = 1. In this case, the t3/4 dependence
persists for all Pe in the intermediate time regime.

The different regimes of the internal polymer dynamics
follow by suitable approximations of Eq. (31), specifically its
contribution by the activity〈

∆r2
a(t)

〉
=

∞∑
n=1

2v2
0 lτ2

n

1 + γRτn

(
1 −

e−γRt − γRτne−t/τn

1 − γRτn

)
. (33)

For times γRt � 1 and t/τn � 1, the Taylor expansion of the
exponential functions yields〈

∆r2
a(t)

〉
= v2

0 lγRt2
∞∑

n=1

τn

1 + γRτn
. (34)

Thus, we obtain a quadratic time dependence independent of
the polymer stiffness. Considering flexible polymers and large
Péclet numbers, the relaxation times are given by Eq. (20) and
the evaluation of the sum yields for pL � 1,〈

∆r2
a(t)

〉
= γ2

RPe2

√
l3

96pµ∆
t2. (35)

This expression quantitatively agrees with the numerical
results of the ballistic regime presented in Fig. 8.

In the time regime 1 < γRt � γRτ1, the sum in Eq.
(33) is dominated by contributions with large n and it can
conveniently be replaced by an integral,80 which yields〈
∆r2

a(t)
〉
= 2v2

0 lτ2
1

(
t
τ1

)3/2

×

∫ ∞
0

dx
x2(1 − e−γRt) − γRt(1 − e−x2

)

x2(x4 − (γRt)2)
, (36)

with the definition x =
√

t/τ1n. Here, we again insert the relax-
ation times Eq. (20) of a flexible polymer. Since γRt > 1 and
the integral is dominated by contributions for x < 1, we obtain〈

∆r2
a(t)

〉
=

2v2
0 l

γR

√
τ1t

∫ ∞
0

dx
1 − e−x2

x2

=
γRl3Pe2

2L

√
πτ1t (37)

in agreement with the full numerical results presented in
Fig. 8.

Inequality (27) implies a strong dependence of the inter-
nal dynamics on the number of active sites. This is illustrated
in Fig. 9 for Pe = 102. At large L/l & 103, we find an
intermediate time regime close to

√
t. This regime gradually

vanishes with decreasing L/l and for L/l . 102 is replaced by
a direct crossover from the ballistic motion to free diffusion.
A similar behavior is obtained for other Péclet numbers. This
effect is particularly important for simulations of polymers
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FIG. 9. Mean square displacements of flexible polymers with Pe = 102 for the
numbers of active sides L/l = 2×101 (blue), 5×101 (green), 102 (red), 2×102

(cyan), 5 × 102 (purple), and 103 (yellow). The time is scaled by the factor
γR = 2DR of the rotational diffusivity and the MSD by the radius of gyration
rg. The dashed lines correspond to the MSDs in the polymer center-of-mass
reference frame.

composed of discrete monomers, either ABPs or polymers
exposed to APB suspensions. Here, typically, “short” poly-
mers are considered, with L/l . 102.42,45,48 Hence, in such
systems, the internal dynamics will only be visible at small
Pe.

V. SUMMARY AND CONCLUSIONS

We have presented results for the dynamics of active semi-
flexible polymers, specifically the end-to-end vector relaxation
behavior and mean square displacements. We describe the
polymer by the Gaussian semiflexible polymer approach, tak-
ing its finite extensibility into account in a mean-field manner
by a constraint on the total contour length.38–40 Activity is
modelled as a colored noise force with an exponential tem-
poral correlation. Due to the linearity of the intramolecular
forces, the equation of motion can be solved analytically
(Ornstein-Uhlenbeck process).86

As already discussed in Ref. 10, the finite contour length
strongly affects the relaxation times of the polymers. Thereby,
the relaxation times decrease substantially with increasing
Péclet number for both flexible and semiflexible polymers.
This is evident from Fig. 4 for a fixed pL value and Fig. 4
of Ref. 10, where τ1 is shown as a function of the Péclet
number for various pL values. In fact, the reduction for semi-
flexible polymers is stronger than that for flexible ones, and
the relaxation times of flexible polymers are assumed for
large Pe and low mode numbers. The latter is seen in Fig. 2
and even more in Fig. 5 of Ref. 10. This is a major and
significant difference to bare Rouse-type models,41–43,58,70

where the polymer relaxation times are independent of
activity.

For flexible polymers, an increasing activity leads to their
monotonic swelling. However, the dominance of the Rouse-
type modes for semiflexible polymers at large Péclet numbers
has pronounced consequences for their conformational prop-
erties. Conformational restrictions by bending energy become
negligible compared to entropic contributions due to active
noise, and the prevalent flexible modes imply shrinkage of
semiflexible polymers.10 Here, our analytical model provides
an explanation for the shrinkage observed in simulations.42,69

Moreover, the dominance of the Rouse modes leads to a
swelling of semiflexible polymers identical to that of flexi-
ble polymers for Pe → ∞, and the mean square end-to-end
distance saturates at L2/2. This swelling is distinctively dif-
ferent from the stiffening of a passive polymer for pL → 0.
Not only is the fluctuation spectrum different—for a passive
semiflexible polymer, bending modes dominate, whereas for
the active polymer the flexible modes dominate—but all relax-
ation times (cf. Eq. (20)) decrease with increasing Pe (µ→ ∞
for Pe → ∞), whereas a rod-like polymer exhibits a finite
rotation-relaxation time. It is this aspect which implies mean
square end-to-end distances smaller than the fully stretched
value L2.

The correlation function of the polymer end-to-end vector
exhibits two decay processes. On the one hand, the polymer
relaxation times determine the decay of the correlation for a
large number L/l of active sites along the polymer contour
independent of polymer stiffness, essentially for all suitable
Péclet numbers. On the other hand, for small L/l, the decay is
determined by the rotational diffusion coefficient of an indi-
vidual ABP. Polymers with in-between L/l show a crossover
from a polymer relaxation-time dominated decay at small
Péclet numbers to a decay governed by the rotational diffu-
sion coefficient at large Pe. In the first case, the decay of the
correlation function depends on both the active velocity v0

and the rotational diffusion coefficient. In the second case,
only the diffusion coefficient is relevant.43,44 In simulations of
polymers comprised of discrete beads exposed to the colored
noise of Eq. (4), e.g., a bath of ABPs, this implies that the
relaxation behavior of (very) short polymers is governed by
the rotational diffusion coefficient of an individual ABP,43,44

whereas the relaxation behavior of long polymers is regu-
lated by the internal, activity-dependent relaxation times of the
polymer.

As noted earlier,41,42,58 the diffusivity of active polymers
is substantially enhanced compared to passive polymers, as
reflected in mean square displacements. However, the mag-
nitude of the displacements is somewhat smaller in our case
compared to calculations neglecting the length constraint. The
respective smaller relaxation times yield smaller amplitudes
for the various modes (cf. Eq. (31)). Free diffusion of the
polymer follows for times t/τ1 � 1. Since τ1 decreases with
increasing Péclet number, the crossover occurs at smaller times
for larger activity. This is another major difference to calcu-
lations neglecting the length constraint. Since activity gives
rise to a ballistic regime in the mean square displacement for
ΓRt . 1, an increase of the activity via v0 leads to a shortening
of the time regime dominated by the internal polymer dynam-
ics and a direct crossover can appear between ballistic motion
and free diffusion as for an individual ABP. This particularly
applies to short polymers.

A major conclusion of our study is that the dynamics of
a polymer is determined by the activity for all times as soon
as Pe � 1. Aside from the ballistic motion at short times,
the dependence of the relaxation time on Pe governs the relax-
ational and translational (MSD) polymer dynamics for γRt & 1
(cf. Fig. 8). This aspect has not been addressed before, but it is
seen in simulations42 and experiments.87 The exponent char-
acterizing the subdiffusive motion in the MSD is essentially
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independent of activity and persistence length; however, the
time range over which subdiffusion persists depends substan-
tially on the activity. We find exponents &1/2, values larger
than those seen in experiments on the dynamics of chromoso-
mal loci.35,36 The discrepancy may be related to additional
viscoelastic effects of the environment in the experimental
studies, as discussed in Ref. 41. However, the propulsion
mechanism and its directionality might also matter, which
is certainly less isotropic in the experiments and oriented
more along the polymer contour. Here, further studies are
necessary.

We have neglected hydrodynamic interactions in our con-
siderations. Such interactions modify the dynamical behavior

in several ways. On the one hand, we expect a change in
the dependence of the relaxation times on the mode number
as in the Zimm model.43,80 On the other hand, preaveraging
might yield an additional dependence on activity, a dependence
not accounted for by a “traditional” approach.80 Calculations
along this line are under way.
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APPENDIX: APPROXIMATION OF EQ. (17)
For flexible polymers (pL � 1), the sum in Eq. (17) over the mode numbers can be evaluated analytically. With the

approximation ∫ L/2

−L/2

(
dϕn(s)

ds

)2

ds = ζ2
n , (A1)

and τn of Eq. (16), Eq. (17) becomes
∞∑

n=1

3

εζ2
n + 2λ

+
v2

0 lγ2

(kBT )2(ε2ζ6
n + 4λεζ4

n + 4λ2ζ2
n ) + kBTγγR(εζ2

n + 2λ)
= L. (A2)

Using ζn = nπ/L, the sum, evaluated up to order n4, yields

coth
(
2pL
√
µ
)

√
µ

−
1

2pLµ
+

Pe2

6∆



√
1

2µ
*
,

√
1 − β

β
coth

(
pL

√
2µ(1 − β)

)

−

√
1 + β

β
coth

(
pL

√
2µ(1 + β)

)+
-

+
coth

(
2pL
√
µ
)

√
µ

−
1

2pLµ


= 1 (A3)

with

β =

√
1 −

2

3∆l3p3µ2
. (A4)

This expression applies as long as 2/(3∆l3p3µ2) < 1. In case
2/(3∆l3p3µ2) > 1, the introduction of

β̃ = i

√
2

3∆l3p3µ2
− 1 (A5)

and analytical continuation leads to the expression

1
√
µ

+
Pe2

6∆



√
2
µ

(1 + β̃2)1/4 sin(α/2) sinh(2x)

β̃
[
cosh(2x) − cos(2y)

]
−

√
2
µ

(1 + β̃2)1/4 cos(α/2) sin(2y)

β̃
[
cosh(2x) − cos(2y)

] +
1
√
µ


= 1. (A6)

Here, the abbreviations α = arctan( β̃), x = pL
√

2µ(1 + β̃2)1/4

cos(α/2), and y = pL
√

2µ(1 + β̃2)1/4 sin(α/2) are used. The

limit pL � 1 implies

1 =
1
√
µ

+
Pe2

6∆



√
2
µ

(1 + β̃2)1/4

β̃
sin

(
α

2

)
+

1
√
µ


. (A7)

Comparison with the full numerical solution yields excellent
agreement.
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