000829815 001__ 829815
000829815 005__ 20220930130122.0
000829815 0247_ $$2doi$$a10.1007/s10596-017-9643-2
000829815 0247_ $$2ISSN$$a1420-0597
000829815 0247_ $$2ISSN$$a1573-1499
000829815 0247_ $$2Handle$$a2128/15905
000829815 0247_ $$2WOS$$aWOS:000415817200002
000829815 037__ $$aFZJ-2017-03443
000829815 041__ $$aEnglish
000829815 082__ $$a630
000829815 1001_ $$0P:(DE-Juel1)164426$$aMcGovern, Sean$$b0$$eCorresponding author
000829815 245__ $$aNovel basin modelling concept for simulating deformation from mechanical compaction using level sets
000829815 260__ $$aNew York, NY [u.a.]$$bSpringer Science + Business Media B.V.$$c2017
000829815 3367_ $$2DRIVER$$aarticle
000829815 3367_ $$2DataCite$$aOutput Types/Journal article
000829815 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510921353_30435
000829815 3367_ $$2BibTeX$$aARTICLE
000829815 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829815 3367_ $$00$$2EndNote$$aJournal Article
000829815 520__ $$aAs sedimentation progresses in the formation and evolution of a depositional geologic basin, the rock strata are subject to various stresses. With increasing lithostatic pressure, compressional forces act to compact the porous rock matrix, leading to overpressure buildup, changes in the fluid pore pressure and fluid flow. In the context of petroleum systems modelling, the present study concerns the geometry changes that a compacting basin experiences subject to deposition. The purpose is to track the positions of the rock layer interfaces as compaction occurs. To handle the challenge of potentially large geometry deformations, a new modelling concept is proposed that couples the pore pressure equation with a level set method to determine the movement of lithostratigraphic interfaces. The level set method propagates an interface according to a prescribed speed. The coupling term for the pore pressure and level-set equations consists of this speed function, which is dependent on the compaction law. The two primary features of this approach are the simplicity of the grid and the flexibility of the speed function. A first evaluation of the model concept is presented based on an implementation for one spatial dimension accounting for vertical effective stress. Isothermal conditions with a constant fluid density and viscosity were assumed. The accuracy of the implemented numerical solution for the case of a single stratigraphic unit with a linear compaction law was compared to the available analytical solution [38]. The multi-layer setup and the nonlinear case were tested for plausibility.
000829815 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000829815 588__ $$aDataset connected to CrossRef
000829815 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b1$$ufzj
000829815 7001_ $$0P:(DE-HGF)0$$aBürger, Claudius M.$$b2
000829815 7001_ $$0P:(DE-HGF)0$$aSchwede, Ronnie L.$$b3
000829815 7001_ $$0P:(DE-HGF)0$$aPodlaha, Olaf G.$$b4
000829815 773__ $$0PERI:(DE-600)2001545-8$$a10.1007/s10596-017-9643-2$$n5-6$$p835–848$$tComputational geosciences$$v21$$x1573-1499$$y2017
000829815 8564_ $$uhttps://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.pdf$$yOpenAccess
000829815 8564_ $$uhttps://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.gif?subformat=icon$$xicon$$yOpenAccess
000829815 8564_ $$uhttps://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000829815 8564_ $$uhttps://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000829815 8564_ $$uhttps://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000829815 8564_ $$uhttps://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829815 8767_ $$82936109444$$92017-10-23$$d2017-10-26$$eHybrid-OA$$jZahlung erfolgt
000829815 909CO $$ooai:juser.fz-juelich.de:829815$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000829815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164426$$aForschungszentrum Jülich$$b0$$kFZJ
000829815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b1$$kFZJ
000829815 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000829815 9141_ $$y2017
000829815 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829815 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829815 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUTAT GEOSCI : 2015
000829815 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829815 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829815 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829815 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829815 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829815 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829815 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829815 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829815 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000829815 980__ $$ajournal
000829815 980__ $$aVDB
000829815 980__ $$aUNRESTRICTED
000829815 980__ $$aI:(DE-Juel1)IBG-3-20101118
000829815 980__ $$aAPC
000829815 9801_ $$aAPC
000829815 9801_ $$aFullTexts