001     829815
005     20220930130122.0
024 7 _ |a 10.1007/s10596-017-9643-2
|2 doi
024 7 _ |a 1420-0597
|2 ISSN
024 7 _ |a 1573-1499
|2 ISSN
024 7 _ |a 2128/15905
|2 Handle
024 7 _ |a WOS:000415817200002
|2 WOS
037 _ _ |a FZJ-2017-03443
041 _ _ |a English
082 _ _ |a 630
100 1 _ |a McGovern, Sean
|0 P:(DE-Juel1)164426
|b 0
|e Corresponding author
245 _ _ |a Novel basin modelling concept for simulating deformation from mechanical compaction using level sets
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510921353_30435
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As sedimentation progresses in the formation and evolution of a depositional geologic basin, the rock strata are subject to various stresses. With increasing lithostatic pressure, compressional forces act to compact the porous rock matrix, leading to overpressure buildup, changes in the fluid pore pressure and fluid flow. In the context of petroleum systems modelling, the present study concerns the geometry changes that a compacting basin experiences subject to deposition. The purpose is to track the positions of the rock layer interfaces as compaction occurs. To handle the challenge of potentially large geometry deformations, a new modelling concept is proposed that couples the pore pressure equation with a level set method to determine the movement of lithostratigraphic interfaces. The level set method propagates an interface according to a prescribed speed. The coupling term for the pore pressure and level-set equations consists of this speed function, which is dependent on the compaction law. The two primary features of this approach are the simplicity of the grid and the flexibility of the speed function. A first evaluation of the model concept is presented based on an implementation for one spatial dimension accounting for vertical effective stress. Isothermal conditions with a constant fluid density and viscosity were assumed. The accuracy of the implemented numerical solution for the case of a single stratigraphic unit with a linear compaction law was compared to the available analytical solution [38]. The multi-layer setup and the nonlinear case were tested for plausibility.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 1
|u fzj
700 1 _ |a Bürger, Claudius M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schwede, Ronnie L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Podlaha, Olaf G.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1007/s10596-017-9643-2
|0 PERI:(DE-600)2001545-8
|n 5-6
|p 835–848
|t Computational geosciences
|v 21
|y 2017
|x 1573-1499
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/829815/files/s10596-017-9643-2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:829815
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUTAT GEOSCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21