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Abstract As sedimentation progresses in the formation and

evolution of a depositional geologic basin, the rock strata

are subject to various stresses. With increasing lithostatic

pressure, compressional forces act to compact the porous

rock matrix, leading to overpressure buildup, changes in

the fluid pore pressure and fluid flow. In the context of

petroleum systems modelling, the present study concerns

the geometry changes that a compacting basin experiences

subject to deposition. The purpose is to track the posi-

tions of the rock layer interfaces as compaction occurs. To

handle the challenge of potentially large geometry deforma-

tions, a new modelling concept is proposed that couples the

pore pressure equation with a level set method to determine

the movement of lithostratigraphic interfaces. The level set

method propagates an interface according to a prescribed

speed. The coupling term for the pore pressure and level-set

equations consists of this speed function, which is depen-

dent on the compaction law. The two primary features of
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this approach are the simplicity of the grid and the flexibility

of the speed function. A first evaluation of the model con-

cept is presented based on an implementation for one spatial

dimension accounting for vertical effective stress. Isother-

mal conditions with a constant fluid density and viscosity

were assumed. The accuracy of the implemented numerical

solution for the case of a single stratigraphic unit with a lin-

ear compaction law was compared to the available analytical

solution [38]. The multi-layer setup and the nonlinear case

were tested for plausibility.

Keywords Basin modelling · Geological modelling ·

Level set methods

1 Introduction

Basin modelling has become an increasingly important

component to the identification of hydrocarbons in various

geological settings, see e.g., [15, 26, 34, 35]. The thermal

history and pore pressure of a basin as it evolves over mil-

lions of years is vital to estimating the generation, migration

and trapping of gas and oil deposits.

The motivation of the present work is to focus on han-

dling significant changes in the stratification of the sample

system. Extensional and compressive forces can be large.

For example, uplift and salt diapirs are potential causes of

large deformations in the layering of the basin. These large

deformations require specific computational techniques to

render their inclusion in the model tractable. A well-known

approach to computing the dynamical evolution of a system

is the Lagrangian framework. In this setting, the coordinate

system of the grid or mesh is updated to track the changes

in the material as it moves. The grid nodes are identified

with material positions. If the material moves significantly,
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then the grid nodes will as well. This can lead to warps

and distorted grid geometry, which degrade the numerical

properties of the discrete solution to the governing differen-

tial equations. To correct this, one needs to re-grid, which,

in general, is an expensive procedure. An alternative to the

re-gridding process is to hold the coordinate system of the

grid fixed, while moving the material through. Known as

the Eulerian framework, this fixed grid approach has the

numerical advantages of a well-behaved, regular grid, but

has the complication that a material element will, in general,

not be identified with a single node. Locating the material

elements on the grid leads to its own challenges. For a gen-

eral review of the two computational approaches, see [5]. A

popular method to address large deformations, the Arbitrary

Lagrangian-Eulerian technique, employs a combination in

order to seek the best of both worlds, see e.g., [11, 13, 23].

In contrast, the level set method [25, 28] exploits the

fixed grid, while introducing a potential function to implic-

itly locate the interfaces between material elements. Level

set methods have been applied to a wide array of domains in

the last decades, from computational fluid dynamics (e.g.,

[31, 37]), groundwater flow [12], crystal growth [30] to

image processing [20]. This study uses the level set method

to investigate the issue of deformation of the geometry of a

sedimentary basin due to mechanical compaction.

As basin modelling is a multi-component and multi-scale

approach to complex physico-chemical processes, the focus

of the current study is restricted to the problem of fluid flow

and compaction that a basin undergoes as layers of sedi-

ment contribute to an evolving pressure profile of the basin.

The compaction, i.e., reduction in porosity, contributes to

changes in pore pressure, thus driving flow, as a result of

increasing sediment load and displacement of strata. Fur-

thermore, in this paper, we consider only a one-dimensional

model of single phase fluid flow under isothermal condi-

tions. The present work draws on the following studies in

compaction and fluid flow.

Schrefler and Scotta [27] present a fully coupled model

of multiphase flow in a deformable poroelastic medium.

They use a finite element method to solve for the displace-

ments of the solid matrix and the pressures of the two

phases. The other variables are related through constitutive

equations. A Galerkin method is used for the spatial dis-

cretization and a Newmark method is used for the temporal

discretization. They validate the numerical results with three

physical examples over small spatial scales and short time

scales. In Minkoff et al. [22], coupling is studied through

two 3-D finite element codes. With the mixed finite element

flow simulator, a black oil model is run with initial values

for porosity and permeability to compute a pore pressure.

This is, then, communicated to the quasi-static geomechan-

ics simulation, which computes porosity and permeability.

These results are passed to the flow simulator and the

subsequent time step flow is calculated, and so on. The

authors argue for a loose coupling approach essentially

since it is computationally less expensive than a fully cou-

pled method. One advantage is that the domains can be quite

different for each system. In Bethke [6], the author pro-

vides a numerical model of compaction-driven flow for a

2-dimensional space. The conservation of rock mass, fluid

flow and heat transfer each contribute an equation to the

coupled system, which is solved iteratively using a finite

difference discretization. The problem is formulated using

a Lagrangian reference frame that moves with the rock

mass. Material added to the top of the basin will form new

nodes when sufficient material is added. See also [7] and

[3]. Chen et al. [9] presents a similar model for compact-

ing soils, but differs in that only compaction and fluid flow

are considered. The triangulation of the basin is updated at

each time step, i.e., the elements are functions of time. The

coupled system is iteratively solved using the mixed finite

element method. Kikinzon et al. [17] follows the model set

forth in [9], while modifying the algorithm for the time-

dependent grid structure. They clearly divide the problem

into physically distinct steps which are treated in sequence,

an operator splitting approach. The presentation of the The-

ory section below draws on this exposition. Christopher [10]

studies the Ursa region of the Gulf of Mexico by using a

1-D compaction model with finite difference solution

method for the fluid pressure. In the present study, as in the

above series of papers, an effective stress principle with only

vertical compaction is assumed. The same basic model of

compaction-driven fluid flow is considered here. Also, the

sedimentation step is split from the fluid pressure solution

step, pursuing an iterative approach to the coupled partial

differential equations.

In contrast to the above series of papers, however, the

level set method is introduced in this paper to implicitly

track the evolving locations of the rock layers in the sedi-

mentary basin. Work of Longoni et al. [18, 19] has already

used implicit interface tracking in the context of sedimen-

tary basin modelling. This approach does not explicitly

model mechanical compaction, as each layer is thought of as

an immiscible non-Newtonian fluid. Solved with an adap-

tive finite element method, the Stokes equations form the

core of their model, with a level set advection framework to

keep the fluid layers separate and an arbitrary Lagrangian-

Eulerian framework to represent the boundary motion of the

basin under deposition. To the best of the authors’ knowl-

edge, the current work is the first application of the level set

method to the problem of modelling a sedimentary basin as

a porous media fluid-structure interaction problem.

In our application, we use the level set method in the fol-

lowing way. Adopting an operator splitting approach, first

the layer interfaces are propagated in response to sedimen-

tation. The state and material properties at the nodes are
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changed to reflect the adjusted interfaces. In other words,

the rock properties are transported through the domain

according to the level set interfaces, rather than the grid

nodes being moved around. Then, the fluid pressure equa-

tion is solved and a compaction rule is applied to determine

the contribution of compaction to the movement of the

interface in the next time step.

Thus, the rock is effectively advected through the domain

via the level set interfaces, with the goal of avoiding the

complex and expensive update rules for moving grids. This

is the novelty of the approach considered here. It has two

main upshots: (1) simplicity of the grid and (2) flexibil-

ity of the speed function. The grid remains regular, which

is advantageous from an implementation point of view.

Secondly, the setup of the coupling between physics and

geometry, allows for free choice of the physical models that

move the interfaces. What is required is to have a speed

function which determines the movement of the front at

each point on the interface.

2 Theory

2.1 Effective stress models

The pores, or void spaces, in a solid material allow for fluid,

liquid or gas, to occupy the space. The fraction of the pore

volume to the total volume is named the porosity. As stress

exerted on the material affects its porosity, this in turn has

consequences for the fluid flow through the porous medium.

A central tool to modelling flow in porous material is the

concept of effective stress introduced in [33]. The effec-

tive stress, σ ′ [ML−1T−2], is given by the total stress, σ

[ML−1T−2], minus the pore pressure, p [ML−1T−2].

σ ′ = σ − p (1)

This approach assumes that the stress on the solid matrix

is a result of solid particles contacting other particles. The

pressure of the fluid in the solid matrix exerts a force on the

constituent solids that is homogeneous and so does not con-

tribute to deformation of the solid matrix. For this reason,

the fluid pressure is subtracted from the total stress to iso-

late the effective stress that the solid matrix experiences. In

the context of the one-dimensional model described in this

paper, we consider effective stress in only one direction, a

scalar, which we refer to as the vertical effective stress.

The importance of the effective stress hypothesis is that

it directly relates the fluid pressure, essential for describ-

ing the flow dynamics, to the stress which is exerted on the

solid skeleton of the medium, the mechanical aspect. For a

historical perspective on the development of porous media

mechanics until recently, see [8].

2.2 Consolidation

Consider a consolidation problem, where sediment is added

to the top of a soil column, as in [14]. The sediment stack

deforms continuously under its own growing weight. The

fluid pressure, above the hydrostatic pressure, in the satu-

rated pore space holds open the pores, resisting compaction.

Extending this to different types of sediment, i.e., with dif-

ferent lithological properties, that are added at different

stages, creates the stratification that we conceptualize as

rock layer interfaces.

Following [15], the Darcy flow relation between the dis-

charge velocity of the fluid (relative to the solid) and the

overpressure gradient, including gravity, is assumed,

v = −
k

µ
∇(p − ρf gz) (2)

where v [LT−1] is the discharge velocity of the pore fluid,

k [L2] is the permeability of the rock, µ [ML−1T−1] is the

viscosity of the fluid, p [ML−1T−2] is the pore pressure,

ρf [ML−3] is the density of the fluid, z [L] is the spatial

position, and g [LT−2] is the acceleration due to gravity.

The mass balance condition requires that any divergence

be compensated by a reduction in the amount of mass

contained,

∇ · v = −
1

1 − φ

∂φ

∂t
+

1

ρf

∂ρf

∂t
(3)

with φ [L3L−3] the porosity. The necessary reduction in

mass comes from a change in the porosity, i.e., a reduction

in volume for the fluid, or a change in fluid density. Neglect-

ing changes in the fluid density, the last term in Eq. 3 is

dropped, and inserting Eq. 2 into Eq. 3 gives,

∇ ·

(

−
k

µ
∇(p − ρf gz)

)

= −
1

1 − φ

∂φ

∂t
(4)

The change in porosity can be expressed as

∂φ

∂t
=

∂φ

∂σ ′
z

∂σ ′
z

∂t
= −C

∂σ ′
z

∂t
(5)

where C [M−1LT2] is the compressibility, a lithological

property dependent on σ ′
z, which is the effective stress in the

z direction, as introduced previously. Recalling that effec-

tive stress is the total stress minus the pore pressure, σ ′
z =

σz − p, Eq. 5 is combined with Eq. 4 to arrive at the pore

pressure equation,

−∇ ·

(

k

µ
∇(p − ρf gz)

)

=
C

(

σ ′
z

)

1 − φ

∂(σz − p)

∂t
(6)

Recall that for the purposes of this paper we consider only a

one-dimensional model.

−
∂

∂z

(

k

µ

∂

∂z
(p − ρf gz)

)

=
C

(

σ ′
z

)

1 − φ

∂(σz − p)

∂t
(7)
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Introducing the overpressure, defined as pore pressure

minus the hydrostatic pressure, po = p−ρf gz, for constant

fluid density, and rearranging, we have

∂po

∂t
−

1 − φ

C
(

σ ′
z

)

∂

∂z

(

k

µ

∂

∂z
po

)

=
∂(σz − ρf gz)

∂t
(8)

The total overburden at a depth z is given by the weight of

the material above,

σz =

∫ z

0

ρb(z
′)gdz′ (9)

where the bulk density, ρb, is the porosity-dependent aver-

age density of the material, i.e.,

ρb = (1 − φ)ρs + φρf (10)

with ρs the density of the rock matrix and ρf the fluid

density. The right hand side of Eq. 8 becomes,

∂(σz − ρf gz)

∂t
=

∂

∂t
(g

∫ z

0

(ρs − ρf )(1 − φ(z′))dz′) (11)

This is the source term for the overpressure generation,

the rate of change of the difference between the overburden

and the hydrostatic pressure. The equation includes three

lithological properties: the compressibility, the permeability

and the rock density, which can vary vertically.

For mathematical closure, boundary and initial condi-

tions must be specified. The top boundary condition is

chosen to be a fixed atmospheric pressure, p0,

p(z = 0) = p0 (12)

for all t > 0. The bottom boundary condition is chosen to

be a no flow condition,

∂p

∂z
= 0 (13)

for all t > 0. For the initial condition, t = 0,

p(z) = p0 (14)

In addition to the pore pressure equation, it is necessary

to estimate the porosity as a function of depth or effective

stress. A number of phenomenological models are presented

in [15]. A good selection is the simple exponential relation

known as Athy’s Law [2],

φ = φ0e
−βσ ′

z (15)

where φ0 is an initial porosity and β is a compaction param-

eter. Bahr et al. [4] provide an analysis of the suitability

of assuming this exponential relation. The main variables

for the physical model considered here are summarized in

Table 1.

2.3 Level set methods

When using level sets, the changing geometry is represented

by evolving interfaces which are implicitly defined over a

Table 1 Main physical variables considered

Physical quantity Symbol Dimension (SI unit)

Pore pressure p ML−1T −2 (Pa)

Overpressure po ML−1T −2 (Pa)

Permeability k L2 (m2)

Viscosity µ ML−1T −1 (Pa s)

Densities ρ ML−3 (kg /m3)

Vertical effective stress σ ′
z ML−1T −2 (Pa)

Overburden σz ML−1T −2 (Pa)

Rock matrix compressibility C M−1LT 2 (Pa−1)

Porosity φ L3L−3 (−)

Void ratio e L3L−3 (−)

Compaction parameters α, β M−1LT 2 (Pa−1)

fixed grid [29]. Again, the motivating idea is that a fixed

grid has the virtue of computational simplicity relative to

frequently remapping the grid. Of course, there is a price

to be paid, namely the introduction of additional partial

differential equations to solve.

As mentioned above, the key idea is to implicitly track

the evolution of interfaces through the use of an additional

equation, namely that for a higher dimensional function, the

level set potential function, [24]. The curve that is to be

tracked, Γ , is embedded in the level set potential function

as the 0 level set, meaning all the points where the poten-

tial function is 0 represent Γ . The level set function, u, is

defined such that at t = 0, its value at x is the signed

distance, d, from x to Γ , i.e.,

u(x, t = 0) = d (16)

The time evolution of u is given by an advection equation

for the level set function,

∂u

∂t
+ w · ∇u = 0 (17)

where w is the velocity field for the interface motion and u

is the level set function . The interface is moved along in the

direction of the velocity field. So, at any time going forward,

Γ remains identified by all the points where the level set

function has value 0.

Defining the speed function, F , to be the the magnitude

of the vector field normal to the front surface, F = w · n̂,

and with the definition of the unit normal vector, n̂ = ∇u
|∇u|

,

Eq. 17 can be rewritten as

ut + F |∇u| = 0 (18)

The velocity field for the interface motion, w, or alterna-

tively the speed function, F , plays a determinative role in

this scheme. For any particular physical application, F must

come from the dynamics of the system. For applications that

solve the Navier-Stokes equation, the speed function can be

taken to be the fluid velocity, [39]. Vila et al. [36] use the
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level set method to track the evolution of resin being infused

into a porous material. This problem is formulated on the

assumption of Darcy flow, and the average fluid velocity is

used as the speed function for the level set evolution.

The movement of the level set is determined by the rel-

evant physics of the problem considered. This is a major

feature of the method in that F can be constructed to take

into account various physical phenomena at different levels

of description. In the current section, we propose a speed

function to capture the dynamics of the consolidation prob-

lem considered. The interfaces to be tracked are defined by

the different rock types. The speed at which these interfaces

move is mostly determined by the sedimentation rate, i.e.,

the rate at which material is added to the column. Further,

there should be a contribution from the compaction of the

layers. The following procedure constructs a speed function

that satisfies this dependence on sedimentation rate and rate

of compaction of the layers. It is not offered as a rigorous

derivation, but rather as a concrete formula for the coupling.

Beginning with Equation B.2 in [15], we have from the

conservation of rock mass,

∇ · vs =
1

1 − φ

dφ

dt
(19)

where vs is the velocity of the rock relative to the fixed coor-

dinate system. Integrating in one dimension from the top of

the column to a point z′ in depth,

∫ z′

0

dvs

dz
dz =

∫ z′

0

1

1 − φ

dφ

dt
dz (20)

On the left hand side, we have

vs |z′ − vs |0 (21)

the velocity at the depth z′ minus the velocity at the surface.

With a constant time step and grid spacing, substituting the

discrete differences for derivatives, the integration is then

approximated as summation over the quantities evaluated on

the discrete grid points, leading to

F = vs |z′ = vs |0 +

z′
∑

i=0

1

1 − φi

∆φi

∆t
∆z (22)

The rock velocity is then used in the level set equation as

the speed function.

For numerical reasons, the level set function deviates

from being a signed distance function as the iterations of

the advection equation increase [21, 24]. Therefore, [32]

proposed a procedure to reinitialize the level set function

back to being a signed distance function. In general, there

will be some error introduced into the position of the inter-

face from solving the reinitialization equation. For example,

in a two-phase fluid problem with different fluid densities,

this affects the mass conservation. Therefore, the recom-

mended frequency with which this procedure should be

applied depends on the application [16]. However, in our

one-dimensional model, reinitialization does not affect the

zero level set, but only the values of the level set function

off the interface (since we always know the distance to the

interface on the line). When the slope around the interface

becomes too flat or steep, depending on some tolerance, the

level set is reinitialized.

Another technical aspect of the level set method that is

used in our model is extending the interface speed [1, 24].

A speed must be assigned to regions neighboring the inter-

face, as well as directly on it. In our case, the speed function

computed within the layer above the bounding interface is

extended into the layer below. This is required for smooth-

ness reasons, since we have rock layers with heterogeneous

properties, and is implemented by taking the slope in the

speed function above the interface and extending the speed

function linearly for a few nodes (a heuristic number has

been the ratio of rock length added in a time step to the

dicretization step). This amounts to something similar to

upwinding of the speed of the rock layer above into the top

of the layer below.

2.3.1 One dimensional example

As a demonstration, for the one dimensional case of an inter-

face moving with speed F , one time step in the propagation

of the front labelled Γ1, is illustated in Fig. 1. The interface

between the blue section and the brown section, Γ1, starts

at a position, z0, and moves to z1 in the next time step. z1

is computed through solving the advection equation for the

level set function, u. The level set function, u, is plotted

beneath a graph of the real coordinates. Given an intial level

set function, ut0 = z − z0, Eq. 18, can be used to find the

level set function at the next time step, ut1 . Using a simple

forward discretization in time gives,

ut1 − ut0

∆t
+ F = 0 (23)

recalling that u was initially defined as a signed distance

function, |∇u| = 1. Rearranging gives,

ut1 = ut0 − F∆t = z − z0 − F∆t (24)

Inspection of u for ut1 = 0 gives the location of the inter-

face. So, z1 = z0 + F∆t , and the interface is moved

forward appropriately. The position, z1, of the interface, Γ1,

is found through solving the advection equation for u, hence

an implicit tracking method. The linear level set function

gives the zero dimensional point of the interface. In two

spatial dimensions, the level set function is also two dimen-

sional, with the interface taking values in a one dimensional

space. This is the essence of the level set method, i.e.,
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Fig. 1 One time step in the

level set evolution

to manipulate a higher-dimensional function to infer infor-

mation about the physically important front location (zero

level set).

3 Methodology

3.1 Model outline

The work flow that is implemented to carry out the con-

solidation simulation is shown in Fig. 2. First, the bulk

rock material is deposited at a constant rate ωb, expressed

directly in terms of length per time [m/s]. Second, the speed

function is computed. Third, the level set equation is solved.

Equation 18 is solved through a backward Euler implicit

finite difference approximation. The level set function is ini-

tialized to a signed distance function at the beginning of the

simulation and reinitialized depending on the slope around

the 0 level set. Fourth, depending on the movement of the

rock layer, the grid nodes are updated with the physical

states. Fifth, the pressure equation, Eq. 7 or an analogous

equation expressed in terms of a different pressure vari-

able, is solved through a centered implicit finite difference

Fig. 2 Flow chart of simulation, beginning at top left

approximation. In order to complete one time step iteration

of the model, the effective stress and porosity are updated.

Equation 15 or a linear compaction relation is then used to

update the porosity distribution in the column. The next time

step then begins again with sedimentation.

This operator splitting approach separates the sedimen-

tation and the compaction steps into sequential events. In

order to enforce consistency between the porosity distribu-

tion and the pore pressure distribution, a Picard iteration

loop was implemented over the pore pressure solution and

the compaction law update. The solution to Eq. 8 is used in

computing the effective stress, Eq. 1, which determines the

new porosity from Eq. 15 (or similar). This is done because

of the nonlinearity introduced into Eq. 8 by considering the

porosity to be a function of effective stress, as in Eq. 15. By

using a known value from a previous step, the Picard itera-

tion is used to linearize the nonlinear appearance of the pore

pressure in the compaction law.

In the case of one layer with a linear compaction law,

the accuracy of this model can be compared to an analyti-

cal solution available in the literature, and in particular as

presented by Wangen [38]. The details of which are laid out

next.

3.2 Verification with analytical solution

Assuming a linear dependence of the void ratio on the

effective stress and a linear dependence of the permeability

on the void ratio, there is one available analytical solu-

tion for the consolidation problem considered here. Wangen

[38] uses a coordinate transform, depending on the local

porosity, to remove the pore space from the equation. In

these “compaction-free” coordinates, the solution can be

expressed analytically.
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The transform between the real coordinate, z, and the

Lagrangian compaction-free coordinate is

z =

∫ ζ2

ζ1

dζ

1 − φ
(25)

This serves to scale the spatial coordinate by the porosity.

In the ζ coordinates, there is no pore space; therefore, the

quantities of bulk density and bulk deposition rate need to

be rendered as just the solid rock properties. Therefore, ρb

and ωb are changed to ρs and ωs , the density of rock and the

deposition rate (still length/time) of pure rock, respectively.

The void ratio was chosen to scale linearly with the effec-

tive stress, e = e0−ασ ′
z, where α [M−1LT2] is a compaction

coefficient and e0 [L3L−3] is the void ratio at the surface.

Since e =
φ

1−φ
, one can see that the porosity dependence

on effective stress is slightly nonlinear. For the comparison

with the numerical model considered, which is formulated

in terms of the porosity, it is important to note that

∂e

∂t
=

1

(1 − φ)2

∂φ

∂t
(26)

and

∂e

∂σ ′
z

∂σ ′
z

∂t
=

1

(1 − φ)2

∂φ

∂σ ′
z

∂σ ′
z

∂t
(27)

Therefore, the compressibility is

C(σ ′
z) =

∂φ

∂σ ′
z

= −α(1 − φ)2 (28)

The permeability is taken to be a function of the void

ratio. The choice of k = k0

(

1+e
1+e0

)

, simplifies the pressure

equation, and mimics the reduction in permeability due to a

decrease in the void ratio.

With these assumptions in place and exploiting the coor-

dinate transform, the pressure equation considered is

∂po

∂t
−

k0

(1 + e0)αµ

∂2po

∂ζ 2
= (ρs − ρf )gωs (29)

Equation 29 is a constant coefficient diffusion equation

with a constant source that has a solution of the form:

po(ζ, t) = γωs t − γ (πct)−
1
2 exp

(

−ζ 2

4ct

)

...

∫ ∞

0

ξ tanh

(

ωsξ

2c

)

cosh

(

ζ ξ

2ct

)

exp

(

−ξ2

4ct

)

dξ

(30)

where γ = (ρs − ρf )g and c = k0

(1+e0)αµ
.

The coordinate transform can then be used to convert

back to the real coordinates, z, using the porosity distribu-

tion computed from the pressure solution.

3.2.1 Dimensionless form

It is possible to perform a variable transform to non-

dimensional coordinates. Scaling the Lagrangian depth

coordinate by ζ =
ζ

ωs ttot
, where ttot is the total time period

simulated and ωs is still the deposition rate of pure rock.

Time is scaled as t = t
ttot

. The overpressure is scaled as

po =
po

(ρs−ρf )gωs ttot
. Similarly, the VES is scaled as σ ′

z =

σ ′
z

(ρs−ρf )gωs ttot
. Carrying out the variable substitions in Eq. 29

leads to,

∂po

∂t
− D

∂2po

∂ζ
2

= 1 (31)

D = k0

(1+e0)αµωs
2ttot

is the dimensionless diffusivity, which

is time independent. One more dimensionless quantity is

necessary to describe the compaction law, e = e0 − ασ ′
z.

With the VES variable substitution, we get

e = e0 − ασ ′
z (32)

where α = α(ρs − ρf )gωs ttot is the dimensionless com-

paction coefficient.

In this formulation, the behavior of the dynamical evolu-

tion can be studied based on the two dimensionless quan-

tities, diffusivity and compaction coefficient, thus reducing

the parameter space of the of the system. In Fig. 3, across

five orders of magnitude in dimensionless diffusivity, we

Fig. 3 Overpressures for different dimensionless diffusivities at a

dimensionless compaction coefficient of 0.26. A larger diffusivity

gives a smaller overpressure. The black diagonal line represents the

lithostatic pressure
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can see the effective behavior of the overpressure, spanning

from almost hydrostatic to almost lithostatic. Similarly, in

Fig. 4, one can see large compaction when the overpressure

is small and essentially no compaction when the overpres-

sure is large. Thus, for a chosen dimensionless compaction

coefficient, we can see the “full” range of behavior through

considering the dimensionless form of the equations.

In Wangen [38], a similar transformation is carried out,

though it differs in the treatment of time. Wangen consid-

ers the characteristic pressure that would be needed to see

noticeable compaction. From this characteristic pressure,

a characteristic length and time are derived. In particu-

lar, Wangen introduces the so-called gravity number, N =
k0(ρs−ρf )g

(1+e0)αµ
and the dimensionless time, τ = α(ρs−ρf )gωs t .

One can see that, up to the definition of time used, τ is

the same as α and, furthermore, N
τ

= D. In [38] the for-

mulation uses a characteristic time, thus making the scaling

of the dimensionless variables time dependent. We use the

total time of simulation to scale the variables, leading to a

time-independent dimensionless diffusivity and compaction

coefficient.

3.3 Plausibility checks

For the multi-layer case, there is no analytical solution

available. Therefore, we introduce some criteria for evalu-

ating these simulations. First, given the assumed dynamics

of consolidation, except when a layer is actively being

deposited, the layers should always decrease in size. This

Fig. 4 Void ratios for different dimensionless diffusivities at a dimen-

sionless compaction coefficient of 0.26

translates into a constraint on the speed function. The speed

at a given layer interface should always be less than the

speed at the layer interface above it, in order to be physically

consistent. This monotonic decrease of the speed function

with layer interface depth can be violated, for example, with

a choice of a very low porosity layer above a very high

porosity layer. In this case, the bounding interface below the

very high porosity layer would move faster than the bound-

ing interface below the very low porosity layer, thus leading

to an increasing thickness of the very low porosity layer.

Second, as in the case of the single layer, if the pore pressure

becomes larger than the lithostatic pressure, leading to a

negative vertical effective stress, this represents an unphys-

ical situation for the proposed model. Physically, if the pore

pressure approaches the lithostatic pressure, compaction

stops and hydrofracturing, the opening of the pore space,

occurs. No faulting or fracturing processes are considered

in our model.

Furthermore, by varying the compaction coefficients and

the permeabilities of the layers, one can create conditions

for overpressure buildup. A seal forms when the permeabil-

ity of an overlying layer is significantly less than that of the

layer beneath (e.g., an order of magnitude). The pore fluid

in the lower layer has difficulty flowing upward, and thus,

with continual deposition, the pore pressure increases.

4 Results and discussion

The reference example for the following numerical exper-

iments is based upon a similar set-up as in [38]. The

test parameters are one kilometer of uncompacted rock

deposited over one million years. The single rock type is

deposited with an initial porosity of 0.61, and a surface per-

meability of 10−18 m2, with a rock density of 2720
kg

m3 . The

compaction coefficient was chosen to be 5·10−8 Pa−1. This

parameter plays a crucial role, and essentially determines

the coupling strength between the vertical effective stress

(VES) and the porosity. For the linear void ratio compaction

law, the depth of the basin was compared to the analyti-

cal value for different values of the dimensionless quantities

defined in Section 3.2.1.

4.1 Verification

4.1.1 Single layer with linear compaction

First we present a plot of the relevant physical variables

after deposition, using a discretization of 100 time steps

and a grid spacing of 2.5 m. In Fig. 5, we see that the

pore pressure is bounded between the lithostatic pressure

and the hydrostatic pressure, which is physically consistent.

Even though the solution variable is the overpressure in the
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Fig. 5 Physical variables after one million years of deposition: Linear

compaction law. A uniform compaction coefficient of 5 · 10−8 Pa−1

was used. The initial porosity was 0.61 and the initial permeability was

10−18 m2 with a discretization of 2.5 m. Note, VES = vertical effective

stress

implementation, adding the hydrostatic pressure results in

the pore pressure, which is plotted here.

Using the solution for the overpressure in Lagrangian

coordinates as put forward in [38], one can compute the

VES, and the porosity distribution. Using the coordinate

transform, one then arrives back at the real coordinates to

find the height of the column. Thus, for the parameters

used here, the height of the column after one million years

should be 907 m. The level set depth was 911 m for an error

of 0.4%, which is acceptable in our opinion. The conver-

gence of the numerical solution to the analytical solution for

decreasing spatial discretization size is shown in Fig. 6.

To understand the parameter space of the simulation

domain, the error of the level set height calculation for

selected values of the dimensionless diffusivity and com-

paction coefficient are shown in Table 2.

It is necessary to consider the relationship between

the diffusivity and the compaction coefficient in looking at

the limits of the model using the linear compaction law. If

the diffusivity is low, then the pore pressure will increase

more quickly with compaction coefficient, leading to a sit-

uation where the pore pressure becomes higher than the

lithostatic pressure, i.e., negative VES. On the other hand,

when the overpressure is close to zero, then the VES is near

its maximum and there is strong compaction. Depending

on the choice of the compaction coefficient, this can lead

to negative void ratios, hence invalid simulations. While

that is clearly non-physical, even very small positive void

ratios are outside the bounds of reasonable domain applica-

bility of the model. The last entry in Table 2 corresponds
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Fig. 6 Error in the level set height calculation. Using 100 time steps

per simulation, the spatial resolution, dz, was increased from 10 m to

1.25 m. The initial porosity was 0.61 and the initial permeability was

10−18 m2 and compaction coefficient of 5 · 10−8 Pa−1

to a simulation where at the bottom of the sediment stack,

according to the analytical solution, the void ratio is 0.0347

or 3% in porosity. (α = 1.56 corresponds to α = 2.4 ·

10−7Pa−1, given the other parameter values.) This porosity

is clearly much smaller than pure mechanical compaction

alone can reach. This unphysical situation would not occur

with a compaction law where the compaction coefficient

changes suitably with the void ratio, e.g., an exponentional

compaction law. Therefore, since such large compaction

coefficients are outside the scope of physical applicability,

Table 2 Percent error for different values of the dimensionless diffu-

sivity, D, and dimensionless compaction coefficient α

D [−] α [−] Height error [%]

202 0.260 1.24

20.2 0.260 1.10

2.02 0.260 0.295

0.202 0.260 −0.939

0.0202 0.260 −0.851

8.09 0.649 5.70

0.809 0.649 1.10

27.0 0.195 0.613

27.0 0.389 2.51

27.0 0.779 9.56

27.0 1.56 49.9

Discretization of 2.5 m and 100 time steps used. The first five entries

are the same α and D values as the analytical solution shown in Figs. 3

and 4. Note, a positive percent difference is when the level set height

is bigger than the analytical solution (i.e., less compaction). The two

negative percentages indicate that the numerical solution was shorter

(i.e, more compaction) than the analytical solution. The last entry in

the table is a simulation at the limits of the analytical solution’s validity
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that simulation, and its large error, is largely irrelevant, and

has been included for completeness.

In summary, the compaction coefficient plays a funda-

mental role in determining the strength of the nonlinear

coupling. The method is more accurate the less compaction

that occurs. This coheres with the fact that there is no itera-

tion over the coupling between the level set movement and

the pressure solution. Thus, the stronger the compaction, the

more the divergence. For compaction coefficients smaller

than say, 1 − 5 · 10−7Pa−1, depending on choice of dif-

fusivity, we conclude the model shows agreement with

the analytical solution. This includes the regime of typical

physically reasonable lithological compaction coefficients.

4.1.2 Multi-layer with linear compaction

In order to perform a simulation with four rock types, at

least four level sets are required. Each interface is assigned

its own level set potential function, with the 0 value defin-

ing the location of the interface. When considering four

rock types, we have the three interfaces between them and

one between the “basement” and the deepest rock. Each

level set is solved independently, though the same speed

function relation, Eq. 22, is shared among them. For a con-

sistency check, we compare the multiple layers, initialized

all with the same rock type, in order to compare to the

single layer case. For the setup with an analytical solution

of 907 m, the multiple layer, single rock numerical model

simulates 912 m, compared to 911 m for the explicitly sin-

gle layer case above. The physical variables are plotted in

Fig. 7. We conclude this is successful for the multiple layer

implementation.

4.2 Plausibility checks

4.2.1 Multi-layer with linear compaction

Introducing a heterogeneous permeability distribution in the

column, (Fig. 8c) leads to differences in the pore pressure

shown in Fig. 8. If a layer of significantly lower permeabil-

ity is above a layer of higher permeability, then overpressure

will build up, as the pore fluid is trapped. We can see

that the pore pressure approaches the lithostatic pressure

(overburden) under the seal, located at circa 500 m, which

comes from a 2 order of magnitude permeability differ-

ence between the two middle layers. This contrasts to to

the pore pressure profile in Fig. 7, where there is a smooth

permeability profile.

The different layers can also have different compaction

coefficients. The differences in compaction are clearly seen

in the void ratio plot in Fig. 9. We can see in Fig. 10 how the

four layers grow during their period of deposition and how

the layers are reduced at different rates, depending on their

Fig. 7 Multiple layers, single rock type: linear compaction law. A

uniform compaction coefficient of 5 · 10−8Pa−1 was used.The initial

porosity was 0.61 and the initial permeability was 10−18 m2 with a

discretization of 2.5 m

compaction coefficient. In the simulation, the second layer

from the bottom has a larger compaction coefficient than the

other layers.

The thicknesses of the different layers are given in

Fig. 10. The second layer ends up with the smallest thick-

ness, as we might expect given the compaction coefficients.

The oscillations that can be seen in the layer thicknesses

come from the relative definition of the layers. As the 0 level

Fig. 8 Strong permeability differences. Around 500 m in depth, there

is a build up of overpressure in the layer beneath the low permeability

layer, indicative of the behavior of a seal
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Fig. 9 Compaction coefficient differences. From the lowest layer

going up, the compaction coefficient is 5 ·10−8 Pa−1, 9 ·10−8 Pa−1, 3 ·

10−8 Pa−1 and 5 · 10−8 Pa−1

set of a layer approaches a node, it might reach it slightly

before or after another layer’s 0 level set reaches its next

node. The size of the oscillations are a discretization effect

dependent on the ratio of length of rock added per time step

over the spatial step size. Over the simulation time, the trend

Fig. 10 Layer Thicknesses for different compaction coefficients.

From the first layer on the left, the compaction coefficient is 5 ·

10−8Pa−1, 9 · 10−8Pa−1, 3 · 10−8Pa−1 and 5 · 10−8Pa−1

clearly shows a reduction in thickness. This decrease looks

plausible when considering the compaction coefficients and

permeabilities of the different layers.

4.2.2 Nonlinear compaction law

More realistic situations can be approached by modelling

compaction using Athy’s law, Eq. 15. As there is no known

analytic solution for the consolidation problem using this

compaction relation, we present the results of a simulation

of multiple layers of one rock type to show the consistency

of our modelling approach. In Fig. 11, we see the effect of

the exponential compaction law. For comparison, the ana-

lytical solution, of course with linear compaction, using

the same parameters shows the significant increase in com-

paction. The total length of the column after the simulation

is over 100 m shorter than when the linear compaction law

is used. For similar pore pressures and effective stresses,

the geometrical difference as a result of the compaction law

used is significant.

As a concluding test case, we demonstrate results from

a simulation using Athy’s law with layers defined by dis-

tinct depositional periods, initial porosities, permeabilities

and compaction coefficients. The simulation parameters are

included in Table 3. Looking at Figs. 12 and 13, one can

see the fundamental interplay between compaction coef-

ficient and permeability. Layer 3 compacts significantly,

despite having the smallest compaction coefficient, since

Fig. 11 Multiple layers, single rock type: Athy’s compaction law.

Using the multiple layer framework, a uniform compaction coefficient

of 5 · 10−8 Pa−1 was used. The initial porosity was 0.61 and the ini-

tial permeability was 10−18 m2 with a discretization of 2.5 m. As there

is not an analytic expression in this case, the analytic solution for the

linear compaction law is plotted for comparison only
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Table 3 Properties of rock layers in Figs. 12, 13 and 14

Rock layer φ0 k0 β Depositional

(bottom up) [–] [10−18 m2] [10−8 Pa−1] period [Ma]

1 0.61 3 8 0.2

2 0.57 1 4 0.3

3 0.60 4 3 0.13

4 0.71 7 5 0.37

φ0 is initial porosity, k0 is initial permeability, β is compaction

coefficient

layer 4 above it has a large permeability. Conversely, layer 2

has a low permeability, which stops layer 1 from compact-

ing significantly even with its high compaction coefficient.

Figure 14 provides a burial plot of the simulation.

In closing, the usefulness of the level set method in repre-

senting a sedimentary basin will be considered. By design,

the level sets introduce an additional, though simple, advec-

tion equation for each interface to be tracked. Of course,

this adds to the computational cost. However, there are two

primary features: (1) simplicity of the grid and (2) flexibil-

ity of the speed function. Firstly, in adopting the Eulerian

framework, the grid remains static. There is no need to

regrid during the computation as the sedimentary layers

evolve. The numerical advantages of a regular grid can be

maintained even for larger and longer computations, well-

suited for high performance computing. Secondly, the speed

function which controls the evolution of the fronts can be

modified ad hoc. It is possible to consider the physical pro-

cesses one wishes. The form of the coupling of the physics

to the geometry remains the same through the level set

Fig. 12 Multiple layers, multiple rock types: Athy’s compaction law.

Description of rock properties is found in Table 3

Fig. 13 Multiple layers, multiple rock types: Athy’s compaction law.

Thickness of layers in time. Description of rock properties is found in

Table 3

evolution. This assumes that the physics solved on the reg-

ular grid can be sufficiently well-represented on the static

grid for all subsequent material arrangements.

1  2 3 4

Fig. 14 Multiple layers, multiple rock types: Athy’s compaction law.

Burial history. Layer 1 has a high compaction coefficient and layer 2

has a low permeability, while layer 3 has a low compaction coefficient

and layer 4 has a high permeability. Description of rock properties is

found in Table 3
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5 Conclusion

In this paper, a model of single phase fluid flow under

isothermal conditions is coupled to the movement of porous

rock undergoing compaction due to sedimentation over long

time scales. The novel ingredient is the use of the level set

method to track the interfaces between rock types while

keeping the numerical discretization grid unchanged. We

proposed a speed function, dependent on sedimentation and

compaction. Numerical experiments have been conducted

to verify the model against the one available analytical

solution, describing a restricted case of a single rock layer

with a linear compaction law. In the more realistic cases

of greater interest to basin modelling, namely Athy’s non-

linear compaction law and multiple rock layers, we have

presented results from simulations that are consistent with

the plausibility checks discussed.

We have shown the flexibility of the speed function. Once

the numerical model is set up, with the level set equations

and speed function, we could change the compaction behav-

ior by modifying only the compaction law used (linear in

the void ratio or Athy’s law) while the rest of the code was

unchanged. It is also possible to add other terms into the

speed function, such as for erosion or cementation.

Looking forward, in order to directly address large defor-

mations, such as those due to folding or buoyancy effects,

a multidimensional model that includes lateral stresses is

needed. This would mean relaxing the vertical effective

stress assumption. How the effective stress tensor influences

the interface motion is determined through the speed func-

tion. It remains open how to construct a speed function

which would represent the strains due to these stresses. Fur-

ther elaborations could also include introducing heat flow

and the temperature dependence of viscosity and density.

One area where the level set coupling model could be

advantageous is overthrusting. Overthrusting and lateral

stresses lead to a modification of the vertical effective stress

into a mean effective stress. Thus, allowing lateral move-

ment, the multiple layer occurrences that result are treated in

practice with a domain decomposition into blocks. In princi-

ple, the topological flexibility of the implicit surface method

would not require this block concept for the thrust belts.
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