000829859 001__ 829859
000829859 005__ 20230713131917.0
000829859 0247_ $$2Handle$$a2128/14372
000829859 020__ $$a978-1-61208-552-4
000829859 037__ $$aFZJ-2017-03481
000829859 041__ $$aEnglish
000829859 1001_ $$0P:(DE-Juel1)144343$$aRybicki, Jedrzej$$b0$$eCorresponding author$$ufzj
000829859 1112_ $$aThe Third International Conference on Big Data, Small Data, Linked Data and Open Data$$cVenice$$d2017-04-23 - 2017-04-27$$gALLDATA$$wItaly
000829859 245__ $$aReproducible Evaluation of Semantic Storage Options
000829859 260__ $$aWilmington, DE, USA$$bIARIA$$c2017
000829859 29510 $$aALLDATA 2017, The Third International Conference on Big Data, Small Data, Linked Data and Open Data
000829859 300__ $$a26-29
000829859 3367_ $$2ORCID$$aCONFERENCE_PAPER
000829859 3367_ $$033$$2EndNote$$aConference Paper
000829859 3367_ $$2BibTeX$$aINPROCEEDINGS
000829859 3367_ $$2DRIVER$$aconferenceObject
000829859 3367_ $$2DataCite$$aOutput Types/Conference Paper
000829859 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1499318904_15396
000829859 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000829859 520__ $$aDistributed infrastructures are continuously challenged with the task of storing and managing different types of data. To this end, suitability and performance evaluations of different available technologies have to be conducted. We motivate our work with the concrete challenge of storing semantic annotations in an efficient way. We treat this problem from the resource provider perspective. The paper includes work in progress of evaluating possible storage engines for semantic annotations. The main focus, however, is on creating a framework to conduct such evaluations in a transparent and reproducible way. Our approach is based on Docker tools, and, therefore, the tests can be run on different platforms, and can be repeated if new version of the evaluated technologies become available.
000829859 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000829859 536__ $$0G:(EU-Grant)654065$$aEUDAT2020 - EUDAT2020 (654065)$$c654065$$fH2020-EINFRA-2014-2$$x1
000829859 7001_ $$0P:(DE-Juel1)128756$$avon St. Vieth, Benedikt$$b1$$ufzj
000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.pdf$$yOpenAccess
000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.gif?subformat=icon$$xicon$$yOpenAccess
000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829859 909CO $$ooai:juser.fz-juelich.de:829859$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000829859 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829859 9141_ $$y2017
000829859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144343$$aForschungszentrum Jülich$$b0$$kFZJ
000829859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128756$$aForschungszentrum Jülich$$b1$$kFZJ
000829859 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000829859 920__ $$lyes
000829859 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000829859 980__ $$acontrib
000829859 980__ $$aVDB
000829859 980__ $$acontb
000829859 980__ $$aI:(DE-Juel1)JSC-20090406
000829859 980__ $$aUNRESTRICTED
000829859 980__ $$aOPENSCIENCE
000829859 9801_ $$aFullTexts