000829859 001__ 829859 000829859 005__ 20230713131917.0 000829859 0247_ $$2Handle$$a2128/14372 000829859 020__ $$a978-1-61208-552-4 000829859 037__ $$aFZJ-2017-03481 000829859 041__ $$aEnglish 000829859 1001_ $$0P:(DE-Juel1)144343$$aRybicki, Jedrzej$$b0$$eCorresponding author$$ufzj 000829859 1112_ $$aThe Third International Conference on Big Data, Small Data, Linked Data and Open Data$$cVenice$$d2017-04-23 - 2017-04-27$$gALLDATA$$wItaly 000829859 245__ $$aReproducible Evaluation of Semantic Storage Options 000829859 260__ $$aWilmington, DE, USA$$bIARIA$$c2017 000829859 29510 $$aALLDATA 2017, The Third International Conference on Big Data, Small Data, Linked Data and Open Data 000829859 300__ $$a26-29 000829859 3367_ $$2ORCID$$aCONFERENCE_PAPER 000829859 3367_ $$033$$2EndNote$$aConference Paper 000829859 3367_ $$2BibTeX$$aINPROCEEDINGS 000829859 3367_ $$2DRIVER$$aconferenceObject 000829859 3367_ $$2DataCite$$aOutput Types/Conference Paper 000829859 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1499318904_15396 000829859 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb 000829859 520__ $$aDistributed infrastructures are continuously challenged with the task of storing and managing different types of data. To this end, suitability and performance evaluations of different available technologies have to be conducted. We motivate our work with the concrete challenge of storing semantic annotations in an efficient way. We treat this problem from the resource provider perspective. The paper includes work in progress of evaluating possible storage engines for semantic annotations. The main focus, however, is on creating a framework to conduct such evaluations in a transparent and reproducible way. Our approach is based on Docker tools, and, therefore, the tests can be run on different platforms, and can be repeated if new version of the evaluated technologies become available. 000829859 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0 000829859 536__ $$0G:(EU-Grant)654065$$aEUDAT2020 - EUDAT2020 (654065)$$c654065$$fH2020-EINFRA-2014-2$$x1 000829859 7001_ $$0P:(DE-Juel1)128756$$avon St. Vieth, Benedikt$$b1$$ufzj 000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.pdf$$yOpenAccess 000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.gif?subformat=icon$$xicon$$yOpenAccess 000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000829859 8564_ $$uhttps://juser.fz-juelich.de/record/829859/files/master.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000829859 909CO $$ooai:juser.fz-juelich.de:829859$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000829859 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000829859 9141_ $$y2017 000829859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144343$$aForschungszentrum Jülich$$b0$$kFZJ 000829859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128756$$aForschungszentrum Jülich$$b1$$kFZJ 000829859 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0 000829859 920__ $$lyes 000829859 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000829859 980__ $$acontrib 000829859 980__ $$aVDB 000829859 980__ $$acontb 000829859 980__ $$aI:(DE-Juel1)JSC-20090406 000829859 980__ $$aUNRESTRICTED 000829859 980__ $$aOPENSCIENCE 000829859 9801_ $$aFullTexts