000829874 001__ 829874
000829874 005__ 20220930130122.0
000829874 0247_ $$2doi$$a10.1002/2015JG003297
000829874 0247_ $$2ISSN$$a0148-0227
000829874 0247_ $$2ISSN$$a2156-2202
000829874 0247_ $$2ISSN$$a2169-8953
000829874 0247_ $$2ISSN$$a2169-8961
000829874 0247_ $$2WOS$$aWOS:000398923300014
000829874 0247_ $$2Handle$$a2128/20696
000829874 0247_ $$2altmetric$$aaltmetric:16231969
000829874 037__ $$aFZJ-2017-03490
000829874 082__ $$a550
000829874 1001_ $$0P:(DE-Juel1)145951$$aPost, Hanna$$b0$$eCorresponding author
000829874 245__ $$aEstimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites
000829874 260__ $$a[Washington, DC]$$c2017
000829874 3367_ $$2DRIVER$$aarticle
000829874 3367_ $$2DataCite$$aOutput Types/Journal article
000829874 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520842095_25955
000829874 3367_ $$2BibTeX$$aARTICLE
000829874 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829874 3367_ $$00$$2EndNote$$aJournal Article
000829874 520__ $$aThe Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from “nearby” FLUXNET sites at ~600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.
000829874 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000829874 536__ $$0G:(DE-Juel1)jicg41_20100501$$aBetter predictions with environmental simulation models: optimally integrating new data sources (jicg41_20100501)$$cjicg41_20100501$$fBetter predictions with environmental simulation models: optimally integrating new data sources$$x1
000829874 588__ $$aDataset connected to CrossRef
000829874 7001_ $$0P:(DE-HGF)0$$aVrugt, Jasper A.$$b1
000829874 7001_ $$0P:(DE-HGF)0$$aFox, Andrew$$b2
000829874 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
000829874 7001_ $$0P:(DE-Juel1)138662$$aHendricks Franssen, Harrie-Jan$$b4
000829874 773__ $$0PERI:(DE-600)2220777-6$$a10.1002/2015JG003297$$gVol. 122, no. 3, p. 661 - 689$$n3$$p661 - 689$$tJournal of geophysical research / Biogeosciences$$v122$$x2169-8953$$y2017
000829874 8564_ $$uhttps://juser.fz-juelich.de/record/829874/files/2015JG003297.pdf$$yOpenAccess
000829874 8564_ $$uhttps://juser.fz-juelich.de/record/829874/files/2015JG003297.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829874 8767_ $$82675518$$92017-04-06$$d2017-05-15$$ePage charges$$jZahlung erfolgt$$zUSD 3625,-
000829874 909CO $$ooai:juser.fz-juelich.de:829874$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000829874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b4$$kFZJ
000829874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b3$$kFZJ
000829874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b4$$kFZJ
000829874 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000829874 9141_ $$y2017
000829874 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829874 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES : 2015
000829874 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829874 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829874 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829874 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829874 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829874 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829874 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000829874 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829874 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829874 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829874 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000829874 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000829874 980__ $$ajournal
000829874 980__ $$aVDB
000829874 980__ $$aUNRESTRICTED
000829874 980__ $$aI:(DE-Juel1)IBG-3-20101118
000829874 980__ $$aI:(DE-82)080012_20140620
000829874 980__ $$aAPC
000829874 9801_ $$aAPC
000829874 9801_ $$aFullTexts