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Abstract The Community Land Model (CLM) contains many parameters whose values are uncertain and

thus require careful estimation for model application at individual sites. Here we used Bayesian inference

with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5

ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of

four central European sites with different plant functional types (PFTs). The posterior CLM parameter

distributions of each site were estimated per individual season and on a yearly basis. These estimates were

then evaluated using NEE data from an independent evaluation period and data from “nearby” FLUXNET

sites at ~600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly

uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their

default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter

values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The

most consistent performance of CLM during the evaluation period was found for the posterior parameter

values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial

pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased

with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon

stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.

1. Introduction

Land surface models (LSMs) such as the Community Land Model (CLM) [Oleson et al., 2013] simulate a

myriad of highly interrelated water, energy, and nutrient fluxes and processes operating at or near the

Earth’s surface. LSMs are used widely to help analyze, understand, and predict the effects of environmen-

tal change on the hydrological and biogeochemical cycles of terrestrial ecosystems and the impact of

those changes (e.g., changes in carbon fluxes or albedo) on the atmosphere and the climate. In this con-

text a major question to be answered is how the land carbon sink—including vegetation dynamics and

soil carbon stocks—responds to climate and land use change [Arora et al., 2013; Brovkin et al., 2013;

Quéré et al., 2012; Todd-Brown et al., 2014]. The 5th Coupled Model Intercomparison Project (CMIP5)

indicates that there are considerable uncertainties and model discrepancies related to carbon stock

predictions [Piao et al., 2013]. These discrepancies can be attributed to (1) model structural deficiencies

(epistemic errors) due to inadequate and/or imperfect process knowledge and description, (2) wrong

model parameter values, (3) uncertainty and biases in the initial values of the state variables, and (4)

measurement uncertainty of the meteorological and land surface model input data [Piao et al., 2013;

Todd-Brown et al., 2013].

Todd-Brown et al. [2013] found that model parameterization was a major source of diverging soil carbon

predictions by different LSMs used in CMIP5. In most physical models, the parameters are often believed

to be time invariant (constant) and ascribed some fixed, or “universal value.” Various studies have ques-

tioned this conventional paradigm [e.g., Richardson et al., 2007; Mo et al., 2008; Williams et al., 2009;

Kuppel et al., 2014] and demonstrate that certain LSM parameters vary dynamically in space and time
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and possibly depend on environmental conditions. For example, consider the temperature sensitivity coef-

ficient Q10, which quantifies using a single value the fractional change of the respiration rate in response to

a 10°C temperature rise. This parameter exerts a strong control on the simulated carbon dynamics of land

surface models such as CLM [Hararuk et al., 2014; Post et al., 2008], yet various empirical and modeling

studies have found the value of Q10 to vary dynamically in space and time, depending on the sites soil

moisture conditions, [Flanagan and Johnson, 2005; Kätterer et al., 1998; Reichstein et al., 2005], mean annual

temperature [Kirschbaum, 1995, 2010], and quality of soil organic matter [Leifeld and Fuhrer, 2005; Rey et al.,

2008].

The maximum rate of carboxylation at 25°C, often referred to as Vcmax25, is another key parameter which

affects strongly the predicted carbon fluxes of LSMs such as CLM [Göhler et al., 2013; Bonan et al., 2011;

Wang et al., 2007]. This parameter is difficult to measure directly in the field, and CLM calibration of its value

against observed carbon fluxes suffers heavily from model structural errors. As discussed in Bonan et al.

[2011], this “may explain the lack of consensus in the values of Vcmax25 used in terrestrial biosphere models.”

What is more, Mo et al. [2008] found significant seasonal and interannual variations of Vcmax25 and the (Ball-

Berry) slope of the stomatal conductance-photosynthesis relationship using data assimilation of an ecosys-

tem model. As a consequence, these authors have criticized LSM calibration methods that do not recognize

properly the role of the initial states and temporal parameter variations.

Model calibration is a common approach to estimate parameters that cannot be measured directly in the

field or laboratory [Gupta et al., 1998, Vrugt et al., 2005, Vereecken et al., 2016, Vrugt, 2016]. The word “cali-

bration” usually involves searching for a single vector of parameter values that minimizes (or maximizes, if

appropriate) some objective function of error residuals without recourse to investigating estimation of

parameter and model predictive uncertainty. We therefore prefer the wording “parameter estimation” to

coin a process of statistical inference using Bayesian analysis of modeling uncertainties. Yet such approach

is very challenging for LSMs as Todd-Brown et al. [2013] highlight that the CMIP5 models, including CLM,

may suffer serious epistemic errors, in particular, with respect to abiotic and biotic processes. These model

structural deficits affect parameter estimation, as wrong process representations can often be compen-

sated for by erroneous parameter values [Vrugt et al., 2005; Williams et al., 2009]. Parameter estimation

can only help maximize model performance, not fix structural errors [Braswell et al., 2005]. Nevertheless,

this approach can provide guidance on epistemic errors, thereby increasing our collective understanding

of the processes and drivers that determine the magnitude size and spatiotemporal patterns of carbon

fluxes [Verbeeck et al., 2011].

Historically, calibration approaches have been developed to estimate model parameters, whereas data

assimilation methods such as the ensemble Kalman filter have focused on inference of state variables

[Raupach et al., 2005]. However, due to spatial-temporal variability of certain parameters and the close link

between model states and parameters, the conceptual distinction of model states and parameters is

increasingly being considered arbitrary and with methods to estimate them. Accordingly, sequential data

assimilation methods such as the ensemble Kalman filter are increasingly being used to estimate ecosys-

tem parameters for carbon flux predictions [e.g., Hill et al., 2012], and traditional Bayesian parameter esti-

mation methods can serve for model state and parameter estimation [Kuppel et al., 2012; Verbeeck et al.,

2011; Braswell et al., 2005; Hill et al., 2012]. Different model-data fusion studies from point to global scale

found that modeled land surface fluxes can be well constrained with eddy covariance data [Keenan

et al., 2013; Kuppel et al., 2012; Verbeeck et al., 2011; Mo et al., 2008; Knorr and Kattge, 2005; Braswell

et al., 2005; Hill et al., 2012; Xu et al., 2006]. However, studies highlight that only a few sensitive parameters

(and states) can be well constrained to substantially improve NEE predictions [Santaren et al., 2007;

Verbeeck et al., 2011; Wang et al., 2001].

Many previous model-data fusion studies for carbon flux estimation have focused on single forest ecosys-

tems [Braswell et al., 2005; Williams et al., 2005; Santaren et al., 2007; Keenan et al., 2012b; Mo et al., 2008;

Verbeeck et al., 2011; Kato et al., 2013; Kuppel et al., 2012, 2013; Rosolem et al., 2013; Santaren et al., 2013]

and have used simple ecosystem models instead of complex land surface models to simulate NEE. Notable

exceptions are studies based on the Commonwealth Scientific and Industrial Research Organisation

Biosphere Model [Wang et al., 2001, 2007] or the Organizing Carbon and Hydrology in Dynamic

Ecosystems (ORCHIDEE) model [Kuppel et al., 2012, 2014; Santaren et al., 2007, 2013; Verbeeck et al., 2011]
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that have used gradient-based algorithms for parameter estimation. These algorithms are not best suited to

constrain highly dimensional, nonlinear LSMs, because they are prone to become stuck in a local minimum

during the optimization process rather than finding the global minima [Williams et al., 2009]. This is related

to the challenge of equifinality [Beven and Freer, 2001; Laloy and Vrugt, 2012;Mitchell et al., 2009], i.e., multiple

optimal parameter sets that generate equally good model outputs, which complicates simulation of land

surface fluxes including NEE [Schulz et al., 2001; Williams et al., 2009; Luo et al., 2009; Todd-Brown et al.,

2013]. Accordingly, Bayesian methods that use Markov chain Monte Carlo simulation (MCMC) are more

suited to estimate LSM parameters [Santaren et al., 2013]. However, the main reason that MCMC approaches

have not been generally applied to estimate LSM parameters is that computational demand is very high

compared to other approaches.

For CLM, studies on calibration or estimation of ecosystem parameters to improve modeled carbon fluxes are

very rare. Bilionis et al. [2015] estimated CLM parameters for soybean using a sequential MCMC approach and

showed a significant improvement of predicted carbon pools and fluxes. Mao et al. [2016] showed that opti-

mized CLM parameters reduced the misfit betweenmodeled and measured soil respiration by 77% for a pine

stand forest. Several studies estimated ecosystem parameters of other models separately for different plant

functional types (PFTs) [He et al., 2013; Kuppel et al., 2014; Xiao et al., 2014]. This has not been done yet in a

comprehensive way for CLM.

As outlined above, ecosystem parameters and initial model states are highly uncertain and simultaneously

important for carbon flux simulation in LSMs. The objective of this study was to obtain a better insight

into CLM parameter and initial state uncertainty and the respective prospects and challenges to improve

simulated NEE via parameter estimation, using measured NEE from EC sites in central and western

Europe. We estimated key CLM4.5 parameters that regulate carbon flux predictions at sites in Germany

and France for four different plant functional types: C3-grass, C3-crop, evergreen coniferous forest, and

broadleaf deciduous forest. Parameter estimation was done using the multichain MCMC method

DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) [Ter Braak and Vrugt, 2008; Laloy and Vrugt,

2012; Vrugt, 2016]. An advantage of the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm

compared to other parameter estimation approaches is that (i) MCMC is not limited to Gaussianity, (ii)

the full posterior probability distribution function (pdf) can be determined, and (iii) the complete time ser-

ies is considered at once in the parameter estimation (in contrast to, e.g., sequential data assimilation

methods). One hypothesis is that parameters estimated separately for single seasons instead of a com-

plete year of NEE data would enhance model-data consistency more. The second hypothesis we tested

is that carbon flux relevant model parameters and initial states are correlated, and thus, estimated para-

meter values differ if estimated jointly with the initial model states. Accordingly, a second objective is to

estimate, evaluate, and compare parameter estimates obtained with or without joint estimation of initial

model states, under consideration of the respective uncertainty ranges. In this context we tested whether

parameters estimated jointly with the initial model states would outperform the parameters estimated

without initial states.

2. Methods and Materials

2.1. Carbon-Nitrogen Flux Representation in CLM

In this study the Community Land Model version 4.5 (CLM4.5) was used in the dynamic carbon-nitrogen

mode (BGC). The acronym “CLM” refers in this paper to CLM4.5BGC. CLM4.5BGC comprises a biogeochemical

model that is based on the terrestrial biogeochemistry model Biome-BGC [Thornton et al., 2002; Thornton and

Rosenbloom, 2005; Thornton et al., 2009] and is characterized by a fully prognostic carbon and nitrogen

dynamic [Oleson et al., 2013].

The net exchange of CO2 between the land surface and the atmosphere (NEE) is driven by two main

processes: (1) the photosynthesis of plants, which determines the gross primary production (GPP) and carbon

uptake, and (2) the respiration (R) through which carbon is released from ecosystems into the atmosphere. In

CLM, photosynthesis is calculated at leaf scale separately for sunlit and shaded canopy fractions [Dai et al.,

2004; Thornton and Zimmermann, 2007] and is upscaled via the leaf area index. The stomatal resistance is

calculated based on the Ball-Berry conductance model [Ball and Berry, 1982; Collatz et al., 1991]. Net
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photosynthesis is determined based on themaximum rate of carboxylation at 25°C, Vcmax25 (μmolm�2 s�1), a

key parameter for the canopy scaling in CLM [Oleson et al., 2013]:

Vcmax25 ¼
flNR FNR aR25
CNL slatop

; (1)

where flNR= fraction of leaf N in Rubisco enzyme (gNRubisco g�1N), FNR=mass ratio of total Rubisco mole-

cular mass to nitrogen in Rubisco (g Rubisco g�1N in Rubisco), aR25= specific activity of Rubisco

(μmol CO2 g
�1 Rubisco s�1), CNL= leaf carbon-to-nitrogen ratio (gC g�1N), and slatop= specific leaf area at

the canopy top (m2g�1C).

The total ecosystem respiration (ER) in CLM includes both heterotrophic respiration (HR) and autotrophic root

respiration, the sum of maintenance respiration (MR), and growth respiration [Oleson et al., 2013]. CLM distin-

guishes between living vegetation pools (roots, stem, and leaves) and dead carbon-nitrogen (CN) pools

[Oleson et al., 2013].

For the simulation of HR, the carbon and nitrogen transfer between the dead CN pools and the CO2 release

during the decomposition process is calculated based on the effective decomposition rates of each CN pool,

altered by the momentary environmental conditions (temperature, soil moisture, and available N). The

temperature scalar for heterotrophic respiration is calculated based on the temperature coefficient Q10

and reference temperature of 25°C for each soil layer. CLM4.5 also includes a new vertically resolved soil

biogeochemistry scheme and decomposition structure [Koven et al., 2013], which was applied here. In this

scheme, decomposition is depth dependent [Jenkinson and Coleman, 2008] and decreases exponentially with

soil depth. Besides soil depth, decomposition and thus heterotrophic respiration rates are dependent on the

size of the carbon-nitrogen pools available, soil temperature, and soil moisture. In addition, an oxygen scalar

is applied, which limits decomposition if the oxygen supply is insufficient.

The maintenance respiration (ME) is the sum of MR separately calculated for leaves (MRleaf), fine roots

(MRfroot), live stem (MRlivestem), and live coarse roots (MRlivecroot). The individual MR contribution for leaves

is calculated as follows:

MRleaf ¼ NSleaf mrb Q10
T2m�T refð Þ=10; (2)

where NSleaf (gNm�2) is leaf nitrogen content,mrb (gC gN
�1 s�1) is the base rate of maintenance respiration

per unit nitrogen content, Q10 is the temperature sensitivity for maintenance respiration, T2m (°C) is the air

temperature at 2m height and Tref= 20 (°C) is the reference temperature.

The contributions MRlivestem and MRlivecroot are accordingly calculated (with NSlivestem and NSlivecroot instead

of NSleaf). MRfroot is the sum of MRfroot separately calculated for different soil layers j using the soil tempera-

ture at level j instead of T2m and including the fraction of fine roots present at soil level j. Growth respiration is

calculated individually for each allocation pathway based on the growth respiration factor gR which is multi-

plied with the carbon allocated to each individual living vegetation pool at a given time step [Oleson et al.,

2013]. The CLM4.5 plant functional types (PFTs) considered here were (i) needleleaf evergreen temperate tree

(short: “coniferous forest”), broadleaf deciduous temperate tree (short: “deciduous forest”), C3 nonarctic grass

(short: C3-grass), and C3-crop. Plant phenology representation follows three different schemes depending on

the particular plant functional type (PFT): (1) evergreen phenology, (2) seasonal deciduous phenology, and (3)

stress deciduous phenology. Both C3-grass and C3-crop follow scheme 3 [Oleson et al., 2013].

2.2. Eddy Covariance Sites and Evaluation Data

The half-hourly NEE data measured at four eddy covariance sites with different land cover types were used

for CLM parameter estimation (Figure 1). Three of the four sites are located in the Rur catchment and are

part of the Terrestrial Environmental Observatories (TERENO) network [Zacharias et al., 2011]. The exten-

sively used C3-grassland site Rollesbroich (“RO”) (50.6219142°N, 6.3041256°E) is located in the Eifel region

of western Germany at 514.7m above sea level (asl). The winter wheat site Merzenhausen (“ME”)

(50.92978°N/6.2969924°E) is located 34 km northeast of RO in an agricultural lowland region. For further

details see Post et al. [2015]. The EC raw data for both sites were processed with the TK3.1 software

[Mauder and Foken, 2011], which includes a standardized quality assessment system and uncertainty esti-

mation scheme as presented in Mauder et al. [2013]. For RO, the statistically derived uncertainty estimates

[Mauder et al., 2013] were verified with uncertainty estimates based on an extended two-tower approach
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[Post et al., 2015]. The coniferous forest site Wüstebach (“WÜ”) (50.5049024°N, 6.33138251°E) is located in

the Eifel national park at 606.9masl and is covered by spruces. EC data for WÜ were processed with the

software ECpack [Dijk et al., 2004] and with an additional postprocessing according to Graf et al. [2014].

NEE time series were available from June 2010 to May 2013 (WÜ) and from May 2011 to December 2013

(RO and ME). Only non-gap-filled, half-hourly data with quality flag 0 (high-quality data) and 1 (moderate-

quality data) based on the quality assessment described in Mauder et al. [2013] were used in this study.

In addition to RO, ME, andWÜ, we used FLUXNET data provided for the Fontainebleau deciduous forest site in

France (FR-Fon) (48.4763°N, 2.7801°E) (from year 2005 to 2008) for parameter estimation. For this site no addi-

tional information such as site management was available. Four additional FLUXNET sites served as evalua-

tion sites: the grassland site Grillenburg (DE-Gri (50.9495°N, 13.5125°E)), the coniferous forest site Tharandt

(DE-Tha (50.9636°N, 13.5669°E)), the agricultural site Klingenberg (DE-Kli, (50.8929°N, 13.5225°E)), and the

deciduous forest site Hainich (DE-Hai, (51.0793°N, 10.4520°E)). Gap-filled level 4 data for those FLUXNET sites

were available for the years 2009–2012 (DE-Gri, DE-Tha, and DE-Kli) and for the years 2005–2008 (DE-Hai).

Again, only NEE data with quality 0 (original), 1 (most reliable), and 2 (medium reliable) were included in

the analysis, while data with flag 3 (least reliable data) were not included. As uncertainty of FLUXNET NEE

eddy covariance data was not provided, we estimated the NEE measurement uncertainty for the FLUXNET

sites based on the linear regression functions obtained from the extended two-tower approach presented

in Post et al. [2015] (Figure 6b).

2.3. The DREAM(zs) Algorithm: Theory and Implementation

The Community Land Model has many different parameters whose values cannot bemeasured directly in the

field at the application scale of interest and instead have to be determined by calibration using observations

of the system output. If we adopt a Bayesian formalism, then we can infer the statistical distribution of the

model parameters using

Figure 1. European eddy covariance sites used for parameter estimation (ME, RO, WÜ, and FR-Fon) and model evaluation
(all sites).
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p xjeY
� �

¼
p xð Þp eYjx

� �

p eY
� � ; (3)

where x are the model parameters to be estimated, eY = { ey1;…; eyn } is a n-vector of measured data, p xjeY
� �

signifies the posterior probability density function (pdf), L xjeY
� �

≡ p eYjx
� �

is the likelihood function, p(x) the

prior distribution, and p eY
� �

the normalizing constant. In practice, p eY
� �

needs not be computed, and all

statistical inferences about p xjeY
� �

can be made from its unnormalized density, p xjeY
� �

∝p xð ÞL xjeY
� �

.

We assume herein that the prior distribution is uniform (noninformative) and uses the ranges of the

parameters listed in Table 1. The likelihood function quantifies in probabilistic terms the level of agreement

between the simulated n-vector, Y(x) and the corresponding observed data, eY . Under the assumption of

uncorrelated and normally distributed error residuals, E xð Þ ¼ eY � Y xð Þ ¼ e1 xð Þ;…en xð Þf g , the likelihood

function can be written as follows:

L xjeY; σ2
� �

¼ ∏
n

t¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2t

p exp �1

2

et xð Þ
σt

� �2
" #

; (4)

where σ = {σ1,…,σn} is a n-vector with standard deviations of the measurement error of the observations. If

homoscedasticity of the measurement errors is anticipated, then the likelihood function of equation (4)

can be simplified to

L xjeY
� �

∝

Xn

t¼1

et xð Þj j�n (5)

using

s2 ¼ 1

n� 1

Xn

t¼1

et xð Þð Þ2 (6)

as sufficient statistic of the measurement error variance σ2 [Vrugt, 2016]. This sum of squared error-type like-

lihood function is used herein for posterior inference. NEE measurement uncertainties are known to increase

with the flux magnitude [e.g., Post et al., 2015; Richardson et al., 2006]. Considering heteroscedastic instead of

homoscedastic measurement uncertainty would thus be preferable. Therefore, we also tested more sophis-

ticated likelihood functions (e.g., a log density function), where heteroscedastic measurement errors are con-

sidered. Uncertainty estimates based on Mauder et al. [2013] were assigned for each corresponding

measured value. However, in these experiments convergence was considerably prolonged in many cases

compared to the sum of squared error likelihood function, and convergence was often not achieved. We

therefore decided to assume homoscedastic measurement uncertainty, although we recommend consider-

ing heteroscedastic measurement errors if CPU time permits.

For reasons of numerical stability, we use the log formulation, ℒ xjeY
� �

of equation (5):

ℒ xjeY
� �

¼�1

2
n log

Xn

t¼1

et xð Þ2
( )

: (7)

Now the prior distribution and likelihood function have been defined, what is left is to summarize the poster-

ior distribution, xjeY
� �

of the model parameters. For CLM, this posterior distribution cannot be obtained by

analytical means or by analytical approximation. We therefore resort to iterative methods and approximate

the posterior pdf using Markov chain Monte Carlo (MCMC) simulation [Metropolis et al., 1953]. The basis of

MCMC simulation is a Markov chain that generates a randomwalk through the search space and successively

visits solutions with stable frequencies stemming from a stationary distribution.

In this paper, MCMC simulation is performed using the DREAM algorithm [Vrugt et al., 2008, 2009; Vrugt,

2016]. This multichain MCMC simulation algorithm automatically tunes the scale and orientation of the pro-

posal distribution in route to the target distribution and exhibits excellent sampling efficiencies on complex,

high-dimensional, and multimodal target distributions. The use of multiple chains offers a robust protection

against premature convergence and opens up the use of a wide arsenal of statistical measures to test

whether convergence to a limiting distribution has been achieved.
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In short, in DREAM N different Markov chains are run simultaneously in parallel. If the state of a single chain is

given by the d vector x, then at each generation t� 1 the N chains define a population, Xt� 1=

x1t�1;…; xNt�1

� �
which corresponds to a N× dmatrix, with each chain as row. If A is a subset of d* dimensions

of the original parameter space,ℝd�
⊆ ℝ

d then a jump (dXi) in the ith chain, i= {1,…,N} at iteration t= {2,…, T}

is calculated from Xt� 1 using

dXi
A ¼ ζ

d* þ 1d� þ λd�ð Þγ δ;d�ð Þ
Xδ

j¼1

X
aj
A � X

bj
A

� �

dXi
≠A ¼ 0;

(8)

where γ ¼ 2:38=
ffiffiffiffiffiffiffiffiffiffi
2δd�

p
denotes the jump rate, δ is the number of chain pairs used to generate the jump, and

a and b are vectors consisting of δ integers drawn without replacement from {1,…, i� 1, i+ 1,…,N}. The

values of λ and ζ are sampled independently from a multivariate uniform distributionU
d* �c; cð Þ and normal

distribution Nd* 0; c�ð Þ, respectively, and, with typically c= 0.1 and c* small compared to the width of the

target distribution (e.g., c*= 10�6). To enable direct jumps between disconnected posterior nodes, the value

of γ is set to unity with a 20% probability; otherwise, the default value of γ is used. The d* members of the

subset A are sampled from the entries {1,…, d} (without replacement) and define the dimensions of the para-

meter space to be sampled by the proposal.

The proposal point of chain i at iteration t then becomes

Xi
p ¼ Xi þ dXi; (9)

and the Metropolis acceptance ratio α is used to determine whether to accept this proposal or not:

Paccept xit�1→Xi
p

� �
¼ min 1;

p Xi
p

� �

p xit�1ð Þ

2
4

3
5: (10)

If the candidate point is accepted, then the ith chain moves to the new position, that is, xit�1 ¼ Xi
p, otherwise

xit ¼ xit�1 [Vrugt, 2016]. Thus, each of the N chains generates a random walk through the d-dimensional para-

meter space. After a burn-in period, the Markov chains have become independent of their initial value, and

convergence is defined and monitored with the univariate R̂ -convergence diagnostic of Gelman and Rubin

[1992].

We use herein a simple adaptation of DREAM, called the DREAM(zs) algorithm, which creates the jumps in

equation (8) from an “archive” of past states of the joint chains rather than their current states only [Vrugt,

2016]. This reduces the required number of Markov chains to just a few. Moreover, DREAM(zs) uses a “snooker

update” as well [Ter Braak and Vrugt, 2008] to increase diversity of the sampled proposals. We assume that

Table 1. Parameters Estimated With DREAM(zs) Including Lower Bounds (Min) and Upper Bounds (Max) Defined for the DREAM Prior Estimate and Used as Input to
Latin Hypercube Sampling (LHS)

Short Name Long Name (Unit)

CLM 4.5 Default Values (Minimum/Maximum)

C3-Grass C3-Crop Coniferous Forest Deciduous Forest

PFT Parameters

flNR Fraction of leaf N in
Rubisco enzyme

0.1365 (0.05/0.35) 0.1758 (0.05/0.35) 0.0509 (0.02/0.15) 0.1007 (0.05/0.35)

slatop Specific Leaf Area (SLA) at
top of canopy (m2/gC)

0.03 (0.01/0.08) 0.03 (0.01/0.08) 0.01 (0.005/0.08) 0.03 (0.01/0.08)

gR Growth respiration factor 0.3 (0.1/0.4) 0.3 (0.1/0.4) 0.3 (0.1/0.4) 0.3 (0.1/0.4)
rb CLM rooting distribution

parameter (1/m)
2.0 (0.5/4.0) 3.0 (0.5/4.0) 2.0 (0.5/4.0) 2.0 (0.5/4.0)

ψc Soil water potential at
full stomatal closure (mm)

�2.75 × 105

(�4.5 × 105/�1.5 × 105)
�2.75 × 105

(�4.5 × 105/�1.5 × 105)
�2.55 × 105

(�4.0 × 105/�1.5 × 105)
�2.55 × 105

(�4.0 × 105/�1.5 × 105)
Hard-Wired Parameters (Not PFT Specific)
Q10 temperature coefficient 1.5 (1.1/3.0)
mrb base rate for maintenance respiration 2.53 × 10�6 (1.5 × 10�6/4.5 × 10�6)
bs Ball-Berry slope of conductance-

photosynthesis relationship
9 (5.0/12.0)

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG003297

POST ET AL. ESTIMATION OF CLM PARAMETERS 667



convergence of the DREAM(zs) algorithm to a limiting distribution has been achieved if the R̂ j– statistic is

smaller than 1.2 for all parameters, j= {1,...,d}, of the target distribution. The least squares parameter values

(also referred to as maximum a posteriori, or MAP, solution) are found by locating the sample of the posterior

distribution with highest posterior density:

MAP ¼ x∈χ∈ℝd
argmax

p xjeY
� �

; (11)

where χ signifies the d-dimensional hypercube that makes up the feasible parameter space of Table 1. A full

description of the DREAM and DREAM(zs) algorithms can be found in Ter Braak and Vrugt [2008], Vrugt et al.

[2008, 2009], and [Vrugt, 2016] and interested readers are referred to these publications for additional details.

3. Setup of Simulation Experiments

3.1. CLM4.5 Setup and Input Data

For each site, CLM4.5BGC was set up using basic site-specific input data. For each soil layer, the soil texture

(percentage clay and sand) was defined. For the sites RO, WÜ, and ME the German soil map (BK50) served

as basis. For the FLUXNET sites no information on soil texture was available. Therefore, the soil texture for

the forest sites was defined as for WÜ and the soil texture for DE-Kli and DE-Gri as for ME and RO, respec-

tively. For all sites, the coverage by the site-specific PFT was set to 100%, which implies that smaller con-

tributions of other PFTs within the EC footprint were neglected. Winter wheat in CLM4.5 had not been

parameterized or validated yet, so the winter wheat site ME was defined as “C3-crop,” which is treated like

a nonmanaged C3-grass.

CLM was driven by the COSMO-DE (Consortium for Small-scale Modeling- Deutschland) reanalysis [Baldauf

et al., 2009] provided by the German Weather Service for the sites RO, WÜ, and ME. The COSMO-DE data

include hourly time series of air temperature, incoming short wave radiation, incoming long wave radiation,

precipitation, atmospheric pressure, specific humidity, and wind speed. The meteorological input data

(2008–2013) was provided in 2.8 km2 resolution and downscaled to 1 km2 grid resolution using nearest

neighbor interpolation based on Delaunay triangulation. For the RO site gap-filled atmospheric input data

measured at the EC tower were available. Half-hourly NEE was calculated for 2012 using either local site data

or COSMO-DE reanalysis data as input. The differences between the simulations were very minor.

For each site CLM4.5 was spun-up for 1200 years in BGC “spin-up mode,” i.e., accelerated carbon-nitrogen

cycling, using atmospheric input of at least 3 years (2008–2010 in case of RO, WÜ, and ME). The respective

restart files with initial states were then used for a final 3 years spin-up in normal mode (“exit-spin-up”). We

also tested longer exit-spin-up periods up to 100 years but found that results (both carbon pools and fluxes)

were nearly identical after a 3 years and a 100 years exit-spin-up period.

The CLM setup and procedure of the evaluation runs at the FLUXNET sites was nearly identical to the para-

meter estimation runs. However, local meteorological data measured at the FLUXNET sites were used for

the CLM spin-up and forward runs.

3.2. Selection of Parameters Estimated With DREAM(zs)

In this study, eight CLM4.5 parameters were estimated with DREAM(zs). The selection of these eight key para-

meters (Table 1) was based on a simple, local sensitivity study with 32 parameters (supporting information

Table S1). In the sensitivity study, linear correlation plots between each of the 32 parameters and the carbon

fluxes (NEE, ER, and GPP) were generated and compared, using monthly and annual means of different years.

Sensitivity analysis was carried out for the sites RO, ME, and WÜ covering three different PFTs (C3-grass,

C3-crop, and coniferous forest). Sensitivity was tested for the year 2012 and for five individual months

in 2012 (March, May, July, September, and December). For each site, each parameter and each time period

100 different parameter values were sampled by Latin hypercube sampling (LHS). The sensitivity was

tested by analyzing the average monthly or annual NEE as function of variation in the input

parameter values.

Most of the eight sensitive parameters such asQ10, bs, flNR, and slatopwere found to be critical key parameters

in previous studies with CLM [e.g., Foereid et al., 2014; Göhler et al., 2013] or similar models [Hararuk et al.,

2014; Post et al., 2008]. flNR and slatop are directly used to calculate Vcmax25. In addition, slatop directly
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determines the prognostically calculated leaf area index (LAI) in CLM. Q10 is closely linked to mrb because

both parameters determine the degree of maintenance respiration. In addition, Q10 determines the hetero-

trophic respiration in the decomposition module. rb and ψc go into the calculation of the effective root frac-

tion which determines the root water uptake [Oleson et al., 2013]. rb determines the cumulative root faction

for each soil layer [Zeng et al., 2011]. The importance of rb is also consistent with previous studies in the

Amazonas region [Baker et al., 2008; Verbeeck et al., 2011] showing that the root profile parameter (describing

the exponential root profile) is a particularly important parameter for improving NEE and LE simulated with

LSMs. The same is true for the Ball-Berry slope of stomatal conductance (bs), which is an important key para-

meter for the calculation of LE and GPP in CLM 4.5, since it determines the water-use efficiency, i.e., ratio of

CO2 assimilation per unit water loss [Bonan et al., 2014]. Since bs is dependent on the effective water available

for photosynthesis, bs is also linked to rb and ψc. Because not all carbon flux-relevant CLM parameters were

included in this sensitivity study and because sensitivity was tested only qualitatively with a local method that

does not consider correlation among parameters (and states), it cannot be excluded that other critical CLM

parameters exist and are not incorporated in this study. However, the intention of this study was not to

perform an elaborated global parameter sensitivity study but to select only a small number of highly sensitive

CLM parameters. Parameters showing a high sensitivity only at some sites and some months like the soil

water potential at full stomatal closure (ψc) were also included.

3.3. Parameter (and Initial State) Estimation With DREAM(zs)-CLM

Parameter estimation experiments were conducted separately for four sites of different plant functional

types (PFTs): RO (C3-grass), ME (C3-crop), WÜ (evergreen coniferous forest), and FR-Fon (broadleaf

deciduous forest).

In order to test whether parameter estimates vary seasonally, DREAM(zs)-CLM parameter estimation was car-

ried out for four individual seasons as well as for the complete annual time series. Five of the eight CLM para-

meters are PFT specific (Table 1). However, previous studies suggested that the parameters Q10, mrb, and bs
also could vary depending on the PFT (and season) [Foereid et al., 2014; Mo et al., 2008; Post et al., 2008].

Therefore, the eight CLM parameters were estimated jointly for each site and time period.

Additional experiments were conducted where two multiplication factors for initial CLM states were

estimated together with the eight CLM key parameters (Table 2). Joint parameter and initial state estimation

was carried out to determine the dependence of the eight parameters on the initial model states and

because the initial model states are associated with a high uncertainty. Two latent variables (multipliers) were

estimated for the following groups of initial CLM states: lCN: living carbon and nitrogen pools (leafc, leafcstorage,

frootc, frootcstorage, livecrootc, livestemc, livestemcstorage, leafn, leafnstorage, frootn, frootnstorage, livecrootn,

livestemn, livestemnstorage) and total leaf area index (LAI) and dCN: dead carbon and nitrogen pools (litr1c,

litr2c, litr3c, soil1c, soil2c, soil3c, litr1n, litr2n, litr3n, soil1n, soil2n, soil3n).

The factor dCN was applied to dead CN pools for each of the 15 CLM soil layers. The minimum and

maximum bounds for LHS were set equal to 0.5 and 2.0, respectively, for both state multiplication

factors. Joint parameter and initial state estimation was only conducted for the model runs that con-

sidered the complete year. lCN and dCN were estimated for the beginning of the parameter

estimation period.

Parameters were estimated with DREAM(zs) using half-hourly NEE time series (gCm�2 s�1) excluding data

with quality flags “low” (least reliable data). Prior parameter values were sampled by LHS using predefined

upper and lower parameter bounds as constraints. We used three chains (default) for parameter estimation

and four chains for the joint parameter and initial state estimation.

3.4. Evaluation of the DREAM(zs)-Derived MAP Estimates

DREAM(zs) estimates for the eight CLM4.5 parameters were evaluated both in time and in space. Evaluation

in time was carried out for CLM simulation runs using estimated parameters over the year that followed

the parameter estimation year (Table 3). These evaluation runs were done for the same sites where para-

meters were estimated. The evaluation year started right after the end of the parameter estimation period

(1 December 2012 for RO and ME, 1 June 2013 for WÜ, and 1 December 2006 for FR-Fon). Evaluation in

space was carried out by using parameter estimates obtained for RO, ME, WÜ, and FR-Fon for model
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simulations at the FLUXNET sites DE-Gri, DE-Kli, DE-Tha, and DE-Hai that have corresponding PFTs to the

estimation sites. The four FLUXNET evaluation sites were situated ~600 km away from the parameter

estimation sites.

The evaluation was made for the 1 year (1y-) and season (s) -based parameter estimates. The 1y parameter

estimates were applied to the whole evaluation run. The seasonal parameters were applied during the cor-

responding season over the course of the yearlong evaluation run. In order to analyze the impact of the

additional initial state estimation on the CLM performance, we also evaluated simulated NEE with para-

meters estimated jointly with dCN and lCN (1yIS) for RO, ME, WÜ, and FR-Fon. The evaluation runs were

compared with the outcome of one additional run with CLM default parameters, which served as

a reference.

To evaluate the performance of the parameters estimated with DREAM(zs)-CLM, observed NEE time series

were compared to the modeled NEE time series. Chai and Draxler [2014] highlight that any metric to quantify

model errors only emphasizes a certain aspect of error characteristic. Therefore, it is beneficial to use a com-

bination of different evaluation indices to assess model performance. In this study, we used the following

evaluation indices:

1. The relative difference of the simulated and measured NEE sum (%):

RD∑NEE ¼ 100

Xn

i¼1
mi �

Xn

i¼1
ey ið Þ

Xn

i¼1
ỹið Þ

						

						
(12)

with ey i =measured half-hourly NEE for a given year, m=modeled equivalent (μmolm�2 s�1) and n= sum of

all time steps where EC data were available during the evaluation year. We used the RDP
NEE evaluation index,

because the NEE sum (
P

NEE) is in important indicator for the longer term carbon sink or source function of

an ecosystem.

2. The root-mean-square error (RMSEm) of half hourly NEE (same time series as for RD∑NEE):

RMSEm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

mi � eyið Þ2
s

: (13)

The RMSE is a commonly used metrics to evaluate model performance and was found to be a sufficient index

for comparing model errors in environmental studies [Chai and Draxler, 2014].

Table 2. CLM4.5 Initial States Estimated With DREAM(zs)

Short Name Long Name Unit

Living CN Pools

leafc/leafn leaf carbon/nitrogen content [gCm�2]/[gNm�2]
leafcstorage/leafnstorage leaf carbon/nitrogen storage [gCm�2]/[gNm�2]
frootc/frootn fine root carbon/nitrogen content [gCm�2]/[gNm�2]
frootcstorage/ frootnstorage fine root carbon/nitrogen storage [gCm�2]/[gNm�2]
livecrootc/livecrootn living coarse root carbon/nitrogen content [gCm�2]/[gNm�2]
livecrootcstorage/ livenrootcstorage living coarse root carbon/nitrogen storage [gCm�2]/[gNm�2]
livesteamc/livesteamn live stem carbon/nitrogen content [gCm�2]/[gNm�2]
livesteamcstorage/ livesteamnstorage live stem carbon/nitrogen storage [gCm�2]/[gNm�2]
Dead CN Pools

lit1C/lit1N litter carbon/nitrogen—fraction 1 [gC m�2]/[gN m�2]
lit2C/lit2N litter carbon/nitrogen—fraction 2 [gC m�2]/[gN m�2]
lit3C/lit3N litter carbon/nitrogen—fraction 3 [gC m�2]/[gN m�2]
soil1C/soil1N soil carbon/nitrogen—fraction 1 [gC m�2]/[gN m�2]
soil2C/soil2N soil carbon/nitrogen—fraction 2 [gC m�2]/[gN m�2]
soil3C/soil3N soil carbon/nitrogen—fraction 3 [gC m�2]/[gN m�2]
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3. The mean absolute difference of the mean diurnal NEE cycle:

MADdiur 1s ¼
1

48

X48

i¼1

mi � yij j; (14)

with m= average modeled NEE at a fixed time during the day and ey =measured equivalent (μmolm�2 s�1).

Compared are values at a 30min interval for the daily cycle, giving 48 values per day. First, four MADdiur_1s

indices (one for each season) were calculated separately according to equation (14). Then, they were aver-

aged to obtain one evaluation index MADdiur for the complete evaluation year.

4. The MAD of the mean annual NEE cycle:

MADann ¼ 1

12

X12

i¼1

mi � yij j; (15)

with ey i = average measured NEE for a given month and m=modeled equivalent (μmolm�2 s�1).

We introduced MADdiur and MADann herein, because the reproduction of the diurnal or the annual NEE cycle

is an important indicator on the physical plausibility of the simulated carbon fluxes. Since neither the RMSE

nor RD∑NEE provides this information, we decided that MADdiur and MADann should be evaluated in order to

obtain a more comprehensive picture of model performance.

The relative improvement ΔMAP (%) of simulations with estimated parameters compared to simulations with

default parameters was evaluated as follows:

ΔMAP ¼ 100
Idefault � IMAPsð Þ

Idefault
; (16)

with IMAPs= evaluation index for NEE modeled with MAPs and Idefault=evaluation index for NEE modeled

with CLM4.5 default parameters.

The 95% confidence intervals of the estimated parameter values were obtained from the posterior pdf. The

evaluation runs with estimated parameters were performed for the MAP estimates and for CLM ensembles

with parameters sampled from the joint pfds (Ens_1y, Ens_1yIS, and Ens_s). The indices MADdiur and

MADann were determined for the evaluation runs with MAP estimates. The NEE sums and RD∑NEE were also

calculated for each of the 60 ensemble members in order to determine the respective 95% confidence inter-

vals of the model output.

Table 3. DREAM(zs)-CLM Parameter Estimation Periodsa

Short Name Season Time Period Sites

FR-Fon_w winter 1 Dec 2006 to 28 Feb 2007 FR-Fon
FR-Fon_sp spring 1 Mar 2007 to 31 May 2007 FR-Fon
FR-Fon_su summer 1 Jun 2007 to 31 Aug 2007 FR-Fon
FR-Fon_au autumn 1 Sep 2007 to 30 Nov 2007 FR-Fon
WÜ_su summer 1 Jun 2011 to 31 Aug 2011 WU
WÜ_au autumn 1 Sep 2011 to 30 Nov 2011 WÜ
site_w winter 1 Dec 2011 to 29 Feb 2012 WÜ, RO, and ME
site_sp spring 1 Mar 2012 to 31 May 2012 WÜ, RO, and ME
site_su summer 1 Jun 2012 to 31 Aug 2012 RO and ME
site_au autumn 1 Sep 2012 to 30 Nov 2012 RO and ME
WÜ_1y whole year 1 Jun 2011 to 31 May 2012 WÜ
site_1y whole year 1 Dec 2011 to 30 Nov 2012 RO and ME
FR-Fon_1y whole year 1 Dec 2006 to 30 Nov 2007 FR-Fon

aRO: Rollesbroich site (C3-grass), ME: Merzenhausen site (C3-crop), WÜ: Wüstebach site (evergreen coniferous forest),
and FR-Fon: Fontainebleau site (broadleaf deciduous forest).
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4. Results

4.1. Evaluation of CLM Forward Runs With Default Parameters

Using default parameters, simulated NEE for the coniferous forest site WÜ and the deciduous forest site FR-

Fon corresponded better with measured values than for the other sites. For the forest sites, summer daytime

NEE was slightly underestimated between early spring and late autumn. Simulated NEE was slightly positive

throughout winter. FLUXNET data for FR-Fon indicated slightly higher nighttime respiration magnitudes and

also included days with net carbon uptake. This is probably a result of nondeciduous vegetation in the EC

footprint area.

Systematic discrepancies between modeled and measured NEE at the grassland site RO were observed for

the years 2011–2013. Modeled NEE was less negative than observed NEE data during summer daytime

and considerably less negative in early spring (~March 2012) and late autumn (~November 2012), indicating

an underestimation of carbon uptake. For ME, model-data discrepancies were more severe. Carbon uptake

was underestimated during daytime and until mid-July. However, in mid-July, measured NEE abruptly

increased due to the senescence of the winter wheat, which was indicated by the camera images that were

regularly recorded at the site. Because the PFT C3-crop in CLM does not include the senescence of winter

wheat, simulated NEE did not represent the sudden decrease in GPP, and accordingly daytime carbon uptake

was greatly overestimated from mid-July to mid-September. The model-data discrepancy after the observed

senescence of winter wheat was considerably higher than, e.g., the model-data discrepancy after the harvest

in August. As the ME site was managed the same way in the years 2011 to 2013, the abrupt shift from under-

estimation to overestimation of carbon uptake in mid-July was present in each of the 3 years.

A comparison of measured and modeled NEE at the RO and the ME site indicated that the simulated plant

onset and offset (i.e., the time when simulated LAI jumps from 0 to >0 and from >0 to 0, respectively) was

not represented correctly by CLM for these PFTs, which in case of ME is not surprising, since winter temperate

cereal is not parameterized yet in CLM4.5. In the parameter estimation year 2012, onset was delayed about

2weeks (observed: beginning of March; modeled: mid-March) at both sites. In the evaluation year 2013, onset

was delayed about 1month at the RO site (observed: beginning of April; modeled: beginning of May) and

about 2weeks early at the ME site (observed: ~10 April, modeled: ~25 March).

4.2. DREAM(zs) Parameter (and Initial State) Estimation

The number of iterations required for a complete convergence of all parameters with DREAM(zs)-CLM was

5000–8000 for seasonal parameter estimation (except ME_sp and FR-Fon_su where >10,000 iterations were

required). When parameters were estimated with NEE time series for a complete year, parameters generally

converged after >12,000 iterations, except for WÜ (~3000 iterations). For illustration, the courses of the con-

vergence diagnostic Rstat for 1 year simulations of WÜ and for FR-Fon are shown in Figure 2.

Tables 4a and 4b summarize the MAP estimates and the respective 95% confidence intervals (95% CI) of the

eight CLM parameters for the four different plant functional types and the single seasons (s-MAPs). For most

sites and parameter estimation periods, the CLM parameters could be well constrained with DREAM(zs), and

the 95% CI were narrow and close to the MAP estimates. The uncertainty ranges of the season-based para-

meter estimates, i.e., the degree to which parameters were constrained, were comprehensible in most cases.

The parameter ψc was most uncertain, i.e., the span of the 95% CI was large for most sites and time periods.

This is probably related to the fact that longer dry phases in this region are very rare. Accordingly, for most

sites and time periods, the simulated soil moisture is not a limiting factor for the simulated GPP or ER, such

that NEE is not very sensitive to ψc. For all sites, bs, which determines the rate of stomatal conductance,

was most uncertain in winter. This is plausible, given that photosynthesis is limited in this period. For site

ME, the spread of bs was also high in autumn, which is plausible as well, because winter wheat was harvested

at the end of July. For all sites except RO, flNR and slatopwere also most uncertain in winter. This is reasonable,

since flNR and slatop determine GPP, which is lowest in winter. Thus, NEE is expected to be less sensitive to

those parameters in winter. For the other seasons, these parameters could be well constrained. The base rate

for maintenance respiration mrb was not well constrained in winter for all sites except ME. For rb, the uncer-

tainty was particularly high in summer for all sites except FR-Fon, where the uncertainty of rb was highest in

winter and spring. This indicates that for those sites and seasons, simulated NEE was not strongly dependent

on the rooting distribution.
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Not only the uncertainty ranges but also the variations of the parameter values estimated for the different

seasons were plausible for most parameters and sites (Tables 4a and 4b). For all sites except WÜ, estimated

parameter values varied notably among the different seasons. Seasonal parameter variations were lowest at the

evergreen coniferous forest siteWÜ. For C3-grass and C3-crop (RO andME), rbwas lowest in spring and summer.

With lower rb values, a higher percentage of water would be taken up by deeper roots. Against this background,

both rb and ψc are assumed to vary not only throughout the year but also interannually considering drought

years, which however was not tested here. Both for RO and ME, estimated values for bs and thus stomata con-

ductance were highest in spring. This is plausible, since photosynthetic capacity is high and stomatal opening

less limited by high temperatures compared to summer. In most cases, the estimated parameter values for Q10,

mrb, and gR were higher than the CLM default, which would result in an increase of simulated ecosystem

respiration with estimated parameters. Particularly estimated Q10 was higher than the CLM default (1.5) for

most sites and time periods. In case of RO and FR-Fon, both flNR and slatop were highest in spring or summer,

respectively. This is reasonable, given that photosynthetic capacity can be expected highest in this period.

In some cases, the range of the estimated parameter values was close to the predefined minimum or maxi-

mum bounds (“edge-hitting parameters”). One example is gR, rb, and Q10 for ME (Tables 4a and 4b). In those

cases, the degree of seasonal variations among parameters, jumping from one edge to the other, is not

considered realistic. This is further discussed in section 5.1.

Tables 4a and 4b summarize the estimates of the eight CLM parameters based on the whole year period with

(1yIS) and without (1y) joint estimation of the two latent variables, i.e. the multipliers lCN and dCN for the

initial carbon-nitrogen pools. Not only the PFT-specific parameters but also the non-PFT-specific parameters

mrb, bs, andQ10 varied for the different sites or PFTs (Tables 4a and 4b). For the forest PFTs, estimatedQ10was

higher (~ 1.9� 3.0) compared to C3-grass and C3-crop, where Q10 was <= 2.0.

Along withQ10, also estimated values for the Ball-Berry slope of stomatal conductance bs clearly differed from

the default throughout the different setups and sites (Tables 4a and 4b). The bs parameter was estimated

lower (~6) than the default (bs=9) for all PFTs except C3-crop, both with and without additional estimation

of the two latent variables. A lower bs implies that the water-use efficiency is increased which results in higher

CO2 assimilation rates per unit water loss. The challenges and possible model development steps in terms of

the Ball-Berry conductance model are thoroughly outlined in Bonan et al. [2014].

For all PFTs except coniferous forest, the relative difference between the size of the living and dead CN pools

differed significantly from the initial states generated with CLM default parameters. dCN was>1.6, indicating

that the initial amount of the dead plant material (litter and soil organic matter pools) was>60% larger com-

pared to the default setup. In contrast, lCN was<1.0 for those sites. Thus, the size of initial living CN pools was

reduced, especially for deciduous forest (lCN = 0.5).

For the coniferous forest site WÜ, MAPs for both dCN and lCN were 1.4. Thus, the size of the living and dead

CN pools was increased, but the ratio remained unchanged. The finding that dCN and fCN were closer to 1

Figure 2. Convergence diagnostics R̂ j(Rstat) of individual parameters j = {1,…,d} estimatedwith DREAM(zs) for the (left) con-
iferous forest site WÜ and the (right) deciduous forest site FR-Fon using half hourly NEE data of 1 year.

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG003297

POST ET AL. ESTIMATION OF CLM PARAMETERS 673



compared to the other sites may be related to the fact that spruces at the WÜ site were planted in the 1940s

and since then the site, which is now part of Eifel National Park, has not been managed such that the steady

state assumption may be more correct compared to the other sites. Besides, WÜ was the only site where the

uncertainty of lCN and dCN was relatively large as indicated by the upper and lower 95% CI. Thus, for

coniferous forest, simulated NEE was less sensitive to the size of the initial carbon-nitrogen pools.

Table 4a. Season-Based Estimates for Eight CLM Parameters Determined With DREAM(zs) for Different Time Periods and the Four Sites With Different Plant
Functional Types

a

Year flNR slatop gR rb ψc Q10 mrb bs

RO_w 2011/2012 0.12,
0.15,
0.14#

0.010,
0.010,
0.010#

0.16,
0.39,
0.36#

1.69,
3.62,
3.62#

�3.98 × 105,
�1.61 × 105,
�2.72 × 105#

2.13,
2.52,
2.39#

2.42 × 10�6,
4.50 × 10�6,
4.47 × 10�6#

5.2,
10.8,
6.1#

RO_sp 2012 0.16,
0.25,
0.25#

0.025,
0.041,
0.041#

0.38,
0.40,
0.40#

1.01,
1.71,
1.01#

�3.94 × 105,
�1.63 × 105,
�2.24 × 105#

1.11,
1.19,
1.14#

4.33 × 10�6,
4.50 × 10�6,
4.50 × 10�6#

8.2,
11.0,
9.4#

RO_su 2012 0.11,
0.16,
0.13#

0.010,
0.011,
0.010#

0.37,
0.40,
0.39#

0.50,
1.78,
0.51#

�4.48 × 105,
�1.73 × 105,
�2.35 × 105#

1.10,
1.57,
1.10#

4.38 × 10�6,
4.50 × 10�6,
4.50 × 10�6#

5.6,
7.0,
6.1#

RO_au 2012 0.14,
0.16,
0.16#

0.010,
0.011,
0.011#

0.35,
0.40,
0.40#

1.04,
3.43,
2.01#

�3.80 × 105,
�1.51 × 105,
�2.77 × 105#

1.65,
1.84,
1.75#

4.23 × 10�6,
4.50 × 10�6,
4.47 × 10�6#

5.8,
6.4,
5.9#

ME_w 2011/2012 0.09,
0.13,
0.12#

0.050,
0.100,
0.100#

0.34,
0.40,
0.40#

2.62,
3.98,
3.70#

�4.49 × 105,
�2.39 × 105,
�4.34 × 105#

2.99,
3.00,
3.00#

1.50 × 10�6,
1.56 × 10�6,
1.50 × 10�6#

5.2,
9.9,
5.2#

ME_sp 2012 0.08,
0.08,
0.08#

0.010,
0.010,
0.010#

0.10,
0.14,
0.10#

0.50,
0.76,
0.52#

�4.45 × 105,
�1.69 × 105,

�2.89 × 105#

1.10,
1.19,
1.10#

4.18 × 10�6,
4.50 × 10�6,
4.48 × 10�6#

9.0,
10.0,
9.7#

ME_su 2012 0.05,
0.05,
0.05#

0.010,
0.011,
0.010#

0.26,
0.40,
0.31#

0.51,
1.35,
0.57#

�4.40 × 105,
�1.58 × 105,

�2.41 × 105#

2.57,
2.99,
2.95#

2.94 × 10�6,
4.37 × 10�6,
4.23 × 10�6#

6.8,
7.6,
7.4#

ME_au 2012 0.07,
0.10,
0.08#

0.081,
0.100,
0.095#

0.10,
0.30,
0.10#

3.71,
4.00,
4.00#

�1.58 × 105,
�1.50 × 105,

�1.51 × 105#

2.85,
3.00,
2.98#

1.51 × 10�6,
2.11 × 10�6,
1.65 × 10�6#

5.2,
10.0,
9.2#

WÜ_w 2011/2012 0.03,
0.15,
0.14#

0.006,
0.073,
0.011#

0.11,
0.39,
0.37#

0.60,
3.92,
3.79#

�3.97 × 105,
�2.07 × 105,
�3.81 × 105#

1.40,
2.99,
2.89#

1.55 × 10�6,
3.42 × 10�6,
2.00 × 10�6#

6.2,
11.9,
10.5#

WÜ_sp 2012 0.05,
0.06,
0.06#

0.005,
0.006,
0.005#

0.33,
0.40,
0.39#

1.16,
3.98,
3.69#

�3.90 × 105,
�2.07 × 105,
�3.51 × 105#

2.58,
3.00,
2.99#

2.30 × 10�6,
3.49 × 10�6,
3.45 × 10�6#

5.0,
5.4,
5.0#

WÜ_su 2012 0.03,
0.06,
0.05#

0.005,
0.007,
0.005#

0.11,
0.39,
0.39#

0.76,
3.89,
3.58#

�3.96 × 105,
�2.10 × 105,

�3.05 × 105#

1.25,
2.79,
2.68#

2.29 × 10�6,
3.48 × 10�6,
3.32 × 10�6#

6.0,
7.9,
6.7#

WÜ_au 2012 0.06,
0.13,
0.10#

0.005,
0.015,
0.005#

0.12,
0.50,
0.49#

0.63,
3.78,
3.39#

�3.97 × 105,
�2.09 × 105,
�2.08 × 105#

2.30,
2.99,
2.99#

1.57 × 10�6,
3.45 × 10�6,
2.50 × 10�6#

5.0,
6.6,
5.0#

FR-Fon_w 2006/2007 0.05,
0.25,
0.09#

0.012,
0.078,
0.064#

0.11,
0.39,
0.18#

1.10,
3.88,
3.00#

�3.95 × 105,
�2.53 × 105,
�2.55 × 105#

2.52,
2.85,
2.68#

1.59 × 10�6,
3.46 × 10�6,
3.34 × 10�6#

5.2,
11.8,
11.0#

FR-Fon_sp 2007 0.07,
0.08,
0.08#

0.010,
0.010,
0.010#

0.10,
0.11,
0.10#

1.60,
3.99,
3.56#

�3.98 × 105,
�2.59 × 105,
�3.44 × 105#

1.17,
1.37,
1.27#

2.33 × 10�6,
3.45 × 10�6,
3.12 × 10�6#

6.5,
7.0,
6.5#

FR-Fon_su 2007 0.19,
0.19,
0.19#

0.019,
0.021,
0.020#

0.39,
0.40,
0.40#

1.00,
1.27,
1.01#

�3.97 × 105,
�2.58 × 105,
�3.11 × 105#

1.10,
1.14,
1.10#

3.35 × 10�6,
3.50 × 10�6,
3.48 × 10�6#

7.4,
9.1,
8.2#

FR-Fon_au 2007 0.17,
0.18,
0.17#

0.020,
0.023,
0.021#

0.38,
0.40,
0.40#

1.01,
1.84,
1.02#

�3.89 × 105,
�2.57 × 105,
�2.96 × 105#

2.91,
3.00,
2.99#

1.51 × 10�6,
2.27 × 10�6,
1.53 × 10�6#

10.0,
12.0,
11.3#

a
MAP estimates (#), including lower bound (upper value) and upper bound (middle value) of the 95% confidence interval. RO: Rollesbroich site (C3-grass), ME:

Merzenhausen site (C3-crop), WÜ: Wüstebach site (evergreen coniferous forest), and FR-Fon: Fontainebleau site (broadleaf deciduous forest); w: winter
(December–February); sp: spring (March–May); su: summer (June–August); and a: autumn (September–November).
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Some of the estimated parameter values differed significantly depending on whether or not they were esti-

mated jointly with lCN and dCN (Tables 4a and 4b). For RO and ME, for example, Q10 was higher for 1y
IS than

for 1y. In case of ME and FR-Fon, mrb was significantly lower for 1y
IS compared to 1y. For FR-Fon, flNR, slatop,

and rb were significantly higher for 1yIS compared to 1y. This shows that estimated parameter values are

strongly dependent on the amount of initial carbon and nitrogen (gCm�2, gNm�2). Due to this dependency,

parameter sets can be considered tailored to a specific range of initial states and thus may not be valid if the

initial states differ notably from the ones parameters were originally estimated for.

Figures 3a and 3b highlight that estimated parameters correlate with each other and with initial states. For

example, Q10 strongly correlates with flNR in case of RO and FR-Fon, and flNR correlates strongly with bs.

Those among-parameter correlations changed depending on whether or not they were estimated jointly

with dCN and lCN. For all sites, the correlation between flNR and slatop substantially increased when para-

meters were estimated together with lCN and dCN. At the same time, lCN and/or dCN correlated strongly

with some of the estimated parameters. The direction and the degree of the correlation between parameters

(and the latent variables) varied among the four sites. This highlights the difficulty in treating processes, initial

states, and parameters separately when examining their contribution to the uncertainty of modeled NEE.

4.3. Evaluation of the Parameter Estimates in Terms of Model Performance and Uncertainty in

Simulated NEE

The CLM parameter sets estimated for RO, WÜ, ME, and FR-Fon were evaluated in time for the evaluation year

and in space for the FLUXNET sites DE-Gri, DE-Tha, DE-Kli, and DE-Hai with corresponding PFTs.

The mean diurnal NEE cycles for the four seasons in the evaluation year are shown for the parameter estima-

tion sites RO (Figure 4), ME (Figure 5), WÜ (Figure 6), and FR-Fon (Figure 7). The mean diurnal NEE cycles for

the evaluation sites are shown in Figure 8 (DE-Gri), Figure 9 (DE-Kli), Figure 10 (DE-Tha), and Figure 11

Table 4b. The Annual Estimates for Eight CLM Parameters and Two Latent Variables (Multipliers), Determined With DREAM(zs) for Different Time Periods and the
Four Sites (ME, RO, WÜ, and FR-Fon) With Different Plant Functional Types

a

Year flNR slatop gR rb ψc Q10 mrb bs lCN dCN

C3-Grass 0.14 0.030 0.30 2.00 �2.75 × 10
5

1.50 2.53 × 10
�6

9.0

RO_1y 2011/2012 0.13,
0.15,
0.14#

0.010,
0.010,
0.010#

0.39,
0.40,
0.40#

1.01,
1.27,
1.01#

�3.79 × 105,
�1.65 × 105,
�2.74 × 105#

1.39,
1.44,
1.41#

4.48 × 10�6,
4.50 × 10�6,
4.50 × 10�6#

6.1,
6.9,
6.5#

RO_1yIS 2011/2012 0.32,
0.35,
0.34#

0.064,
0.069,
0.068#

0.39,
0.40,
0.40#

1.01,
1.48,
1.15#

�3.77 × 105,
�1.63 × 105,
�2.39 × 105#

1.93,
1.99,
1.95#

4.41 × 10�6,
4.50 × 10�6,
4.49 × 10�6#

5.8,
6.4,
6.0#

0.9,
0.9,
0.9#

2.0,
2.0,
2.0#

C3-Crop 0.18 0.030 0.30 3.00 �2.75 × 10
5

1.50 2.53 × 10
�6

9.0

ME_1y 2011/2012 0.25,
0.26,
0.25#

0.079,
0.080,
0.080#

0.20,
0.21,
0.21#

3.88,
4.00,
4.00#

�2.50 × 105,
�2.02 × 105,
�2.18 × 105#

1.10,
1.10,
1.10#

4.42 × 10�6,
4.50 × 10�6,
4.48 × 10�6#

12.0,
12.0,
12.0#

ME_1yIS 2011/2012 0.31,
0.35,
0.35#

0.057,
0.066,
0.064

0.38,
0.40,
0.39#

3.88,
4.00,
4.00#

�4.00 × 105,
�3.72 × 105,
�3.89 × 105#

1.28,
1.39,
1.34#

1.50 × 10�6,
1.59 × 10�6,
1.53 × 10�6#

11.5,
12.0,
12.0#

0.7,
0.8,
0.7#

2.0,
2.0,
2.0#

Coniferous Forest 0.05 0.010 0.30 2.00 �2.55 × 10
5

1.50 2.53 × 10
�6

9.0

WÜ_1y 2011/2012 0.05,
0.07,
0.06#

0.005,
0.006,
0.005#

0.29,
0.40,
0.40#

0.75,
3.95,
3.88#

�3.91 × 105,
�2.07 × 105,
�3.91 × 105#

2.50,
2.99,
2.96#

2.13 × 10�6,
3.48 × 10�6,
3.42 × 10�6#

5.0,
6.2,
5.2#

WÜ_1yIS 2011/2012 0.04,
0.07,
0.06#

0.005,
0.006,
0.005#

0.28,
0.40,
0.40#

0.84,
3.92,
3.95#

�3.96 × 105,
�2.12 × 105,
�3.01 × 105#

2.72,
3.00,
2.93#

1.51 × 10�6,
3.78 × 10�6,
1.54 × 10�6#

5.0,
6.0,
5.0#

1.0,
1.8,
1.4#

0.9,
1.6,
1.4#

Deciduous Forest 0.05 0.010 0.30 2.00 �2.55 × 10
5

1.50 2.53 × 10
�6

9.0

FR-Fon_1y 2006/2007 0.12,
0.12,
0.12#

0.010,
0.010,
0.010#

0.39,
0.40,
0.40#

1.00,
1.17,
1.00#

�3.89 × 105,
�2.57 × 105,
�3.81 × 105#

1.87,
1.97,
1.94#

3.47 × 10�6,
3.50 × 10�6,
3.48 × 10�6#

5.7,
6.0,
5.8#

FR-Fon_1yIS 2006/2007 0.24,
0.27,
0.26#

0.018,
0.021,
0.020#

0.23,
0.32,
0.29#

1.91,
3.92,
2.59#

�3.97 × 105,
�2.55 × 105,
�2.59 × 105#

2.77,
2.99,
2.96#

1.50 × 10�6,
1.75 × 10�6,
1.75 × 10�6#

6.0,
6.2,
6.0#

0.5,
0.5,
0.5#

1.6,
1.7,
1.7#

aMAP estimates (#), including lower bound (upper value) and upper bound (middle value) of the 95% confidence interval. 1y: 1 year of half hourly NEE time series.
Entries in italics: CLM default parameters, IS: with joint estimation with the multiplication factors lCN and dCN for the initial living and dead carbon-nitrogen pools.
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Figure 3. (a) Spearman correlation coefficients (sp) for the two-dimensional correlations of the posterior samples deter-
mined with DREAM(zs)-CLM for four sites with a 1 year time series of eddy covariance NEE data. (b) Spearman correlation
coefficients (sp) for the two-dimensional correlations of the posterior samples determined with DREAM(zs)-CLM for four
sites with a 1 year time series of eddy covariance NEE data, with estimation of the latent variables dCN and lCN for the in
dead and living CN pools.
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(DE-Hai). As indicated by those plots, seasonal-based and/or 1y-based parameter estimates reduced the

model-data mismatch in winter and during night for at least two of the four seasons. Thus, respiration is

probably better represented with estimated parameter values than with CLM default parameter values,

since the contribution of GPP to the total NEE signal at that time is low. Besides, estimated parameters

reduced the overestimation of daytime NEE in spring (RO, ME, WÜ, FR-Fon, and DE-Hai), summer (RO, ME,

WÜ, DE-Gri, and DE-Hai), and autumn (RO,WÜ, FR-Fon DE-Gri, DE-Tha, and DE-Hai). At that time, the

Figure 4. Daily course of (mean) NEE for (a) winter 2012/2013, (b) spring 2013, (c) summer 2013, and (d) autumn2013 for the
Rollesbroich site. Individual lines indicate observed NEE (RO_Obs), NEE simulated with CLM default parameters (CLM_Ref),
and NEE simulated with MAPs determined for the 1 year parameter estimation period (CLM_1y) and for single seasons
(CLM_s).The95%confidence intervalsarealsoplottedandweredeterminedbysampling fromDREAMposteriordistributions.

Figure 5. Daily course of (mean) NEE for (a) winter 2012/2013, (b) spring 2013, (c) summer 2013, and (d) autumn 2013 for
the Merzenhausen site. Shown are observed NEE with the EC method (ME_Obs), NEE simulated with CLM default para-
meters (CLM_Ref), and NEE simulated with MAPs determined for the 1 year parameter estimation period (CLM_1y) and for
single seasons (CLM_s). The 95% confidence intervals are also plotted and were determined by sampling from DREAM
posterior distributions.
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relative contribution of GPP to the total NEE signal is higher than the relative contribution of ER. Thus, the

reduced NEE model-data mismatch in those cases mainly attribute to a reduced underestimation of

carbon uptake, i.e., a higher GPP simulated with estimated parameters.

The mean diurnal NEE cycles were evaluated using MADdiur. As shown in Table 5, seasonally determined MAP

parameter sets (s-MAPs) improved the representation of the mean diurnal NEE course compared to the refer-

ence with CLM default parameters for all evaluation sites, and most of them substantially. In terms of the

Figure 6. Daily course of (mean) NEE for (a) summer 2012, (b) autumn 2012, (c) winter 2012/2013, and (d) spring 2013.
Individual lines indicate observed NEE for the Wüstebach site (WÜ_Obs), NEE simulated with CLM default parameters
(CLM_Ref), and NEE simulated with MAPs determined for the 1 year parameter estimation period (CLM_1y) and for single
seasons (CLM_s). The 95% confidence intervals are also plotted and were determined by sampling from DREAM posterior
distributions.

Figure 7. Daily course of (mean) NEE for (a) winter 2007/2008, (b) spring 2008, (c) summer 2008, and (d) autumn 2008 for
the FR-Fon site. Individual lines indicate observed NEE (FR-Fon_Obs), NEE simulated with CLM default parameters
(CLM_Ref), and NEE simulated with MAPs determined for the 1 year parameter estimation period (CLM_1y) and for single
seasons (CLM_s). The 95% confidence intervals are also plotted and were determined by sampling from DREAM posterior
distributions.
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evaluation in time, the relative reduction of MADdiur with s-MAPs, i.e., the improvement ΔMAP in comparison

to MADdiur_Ref, was 16% for C3-crop to 66% for C3-grass. In terms of the evaluation in space, MADdiur was

reduced by 19% (C3-grass) to 35% (deciduous forest). For most sites, the diurnal cycles of the evaluation per-

iods were better represented with s-MAPs than with 1y-MAPs. With 1y-MAPs, MADdiur was reduced by 12%

(DE-Tha) to 45% (RO) for all PFTs except C3-crop, indicating that the diurnal NEE cycles for those sites were in

better correspondence with observations compared to default parameters.

Figure 8. Daily course of (mean) NEE for (a) winter 2011/2012, (b) spring 2012, (c) summer 2012 and (d) autumn 2012 for
the FLUXNET site DE-Gri. Shown are measurements with the EC method (DE-Gri_Obs), NEE simulated with CLM default
parameters (CLM_Ref), and NEE simulated with MAPs determined for the RO site (same PFT: C3-grass) for the 1 year
parameter estimation period (CLM_1y) and for the single seasons (CLM_s). The 95% confidence intervals are also plotted
and were determined by sampling from DREAM posterior distributions.

Figure 9. Daily course of (mean) NEE for (a) winter 2011/2012, (b) spring 2012, (c) summer 2012, and (d) autumn 2012 for
the FLUXNET site DE-Kli. Shown are observed NEE with the EC method (DE-Kli_Obs), NEE simulated with CLM default
parameters (CLM_Ref), and NEE simulated with MAPs determined for the ME site (same PFT: C3-crop) for the 1 year para-
meter estimation period (CLM_1y) and for the single seasons (CLM_s). The 95% confidence intervals are also plotted and
were determined by sampling from DREAM posterior distributions.
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As indicated by MADann, also, the annual NEE cycles were best represented by s-MAPs (Table 6). However, the

differences between MADann_1y and MADann_s were minor for the sites DE-Gri, DE-Tha, FR-Fon, and DE-Hai.

s-MAPs reduced MADann by 6% (DE-Gri) to 49% (WÜ) compared to the reference run with default parameters.

The improvement of the mean annual NEE cycle with 1y-MAPs was 21% (RO) to 40% (WÜ). For DE-Gri, ME and

DE-Kli, MADann was only reduced with s-MAPs, not with 1y-MAPs.

Figure 10. Daily course of (mean) NEE for (a) winter 2011/2012, (b) spring 2012, (c) summer 2012 and (d) autumn 2012 for
the FLUXNET site DE-Tha. Shown are observed values with the EC method (DE-Tha_Obs), NEE simulated with CLM eva-
luation runs using default parameters (CLM_Ref), and NEE simulated with MAPs determined for the WÜ site (same PFT:
coniferous forest) for the 1 year parameter estimation period (CLM_1y) and for the single seasons (CLM_s). The 95% con-
fidence intervals are also plotted and were determined by sampling from DREAM posterior distributions.

Figure 11. Daily course of (mean) NEE for (a) winter 2006/2007, (b) spring 2007, (c) summer 2007, and (d) autumn 2007 for
the FLUXNET site DE-Hai. The lines shown are observed NEE the EC method (DE-Hai_Obs), NEE simulated with CLM eva-
luation runs using default parameters (CLM_Ref), and NEE simulated with MAPs determined for the FR-Fon site (same PFT:
deciduous forest) for the 1 year parameter estimation period (CLM_1y) and for the single seasons (CLM_s). The 95%
confidence intervals are also plotted and were determined by sampling from DREAM posterior distributions.
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Table 7 summarizes RMSEm and RD∑NEE including the upper and lower 95% confidence intervals obtained

from the posterior pdfs. RD∑NEE was most substantially reduced for DE-Kli with s-MAPs. The observed

∑NEE for DE-Kli was ~82 gCm�2 y�1. The modeled ∑NEE was �104 gCm�2 y�1 for CLM-Ref and

78–130 gCm�2 y�1 with season-based parameter estimates. For RO, RD∑NEE was significantly reduced with

1y-MAPs and s-MAPs from 66% (CLM-Ref) to 5% and 17%. Also, for DE-Gri, RD∑NEE was significantly reduced

with the annual estimates (by 19–25%), but not with the season-based estimates. For the forest PFTs, the

indices differed only minor between 1y and s-MAPs. The reduction of RD∑NEE was 22% (WÜ) to 49%

(DE-Hai) with s-MAPs and 23% (FR-Fon) to 38% (DE-Hai) with 1y-MAPs. However, for coniferous forest, the

improved representation of ∑NEE was only significant with 1y estimates due to the high uncertainty of the

simulated NEE sum with season-based parameter estimates. This is also indicated by the simulated annual

NEE sums (Figure 12) and the diurnal NEE cycles, which exhibit a higher spread with season-based parameter

estimates, especially for WÜ and DE-Tha in winter and spring. In contrast to ∑NEE calculated for the model

evaluation, the NEE time series used to calculate the annual NEE sums in Figure 12 were not filtered according

to available observations.

Figure 12 illustrates the effect of the jointly estimated parameter values on the annual NEE sum of the

evaluation period. For all forest evaluation sites, parameter estimates would result in a strong increase of

the carbon sink function. For forest, the ∑NEE calculated with estimated parameter values was significantly

more in correspondence with observations than ∑NEE calculated with global default values. This highlights

the strong impact parameter estimates can have on predictions of climate-ecosystem feedbacks and simu-

lated carbon pools.

In terms of the estimated joint posterior pdfs of the parameters and the initial state multipliers dCN and lCN,

we found that 1yIS estimates significantly improved the representation of simulated NEE (RD∑NEE and

MADann) for FR-Fon in comparison to the reference. For this site, CLM-1yIS clearly outperformed the equiva-

lent simulations without initial state estimates (CLM-1y) as well as the season-based estimates. Also for ME

and WÜ, the model performance was slightly better for CLM-1yIS in comparison to CLM-1y, but not signifi-

cantly. For WÜ, the uncertainty of the predicted NEE sum increased considerably if initial states were jointly

estimated with the eight parameters (Figure 12). The 1yIS estimates did not outperform the CLM parameter’s

default values for ME. For RO, CLM-1y clearly outperformed CLM-1yIS.

Table 5. Mean Absolute Difference MADdiur (μmolm�2 s�1) for Eight Evaluation Sites, Averaged Over All Four Seasons
of the Evaluation Year

a

PFT Site Eval. Years MADdiur_1y MADdiur_1y
IS MADdiur_s MADdiur_Ref

C3-grass RO ’12/’13 1.05 1.56 0.64 1.91
DE-Gri ’11/’12 1.46 - 1.36 1.67

C3-crop ME ’12/’13 2.98 2.48 1.81 2.15
DE-Kli ’11/’12 2.87 - 1.47 2.08

Coniferous forest WÜ ’12/’13 1.82 1.7 1.74 2.32
DE-Tha ’11/’12 1.95 - 1.92 2.21

Deciduous forest FR-Fon ’07/’08 1.59 1.58 1.67 2.32
DE-Hai ’06/’07 1.38 - 1.32 2.02

a1y: CLM-evaluation runs for annual (1y)-MAPs; IS: joint estimation of parameters and the two latent variables (multipliers)
dCN and lCN; s: CLM-evaluation runs with seasonal (s)-MAPs; ref: calculated NEE with default parameter values (reference).

Table 6. Mean Absolute NEE Difference MADann (μmolm�2 s�1) for Eight Evaluation Sites and the Evaluation Year
a

PFT Site Eval. Years MADann_1y MADann_1y
IS MADann_s MADann_Ref

C3-grass RO 2012/2013 1.04 1.61 0.77 1.31
DE-Gri 2011/2012 1.17 - 1.10 1.17

C3-crop ME 2012/2013 3.31 2.49 1.88 2.36
DE-Kli 2011/2012 2.67 - 1.37 1.59

Coniferous forest WÜ 2012/2013 1.37 1.28 1.16 2.27
DE-Tha 2011/2012 1.51 - 1.51 2.05

Deciduous forest FR-Fon 2007/2008 1.27 0.88 1.24 1.71
DE-Hai 2006/2007 1.50 - 1.49 1.97

aThe 1y: CLM-evaluation runs for annual (1y)-MAPs; IS: with joint estimation of initial state factors; s: CLM-evaluation
runs for seasonal (s)-MAPs; ref: calculated NEE with default parameter values (reference).
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Overall, evaluation results indicate that parameter estimates for the forest PFTs were best transferable both in

time and in space. The 1y-based and seasonal parameter estimates performed similarly well for forest and

also 1yIS estimates considerably reduced the model-data mismatch in comparison to the reference. In this

respect, parameters for the forest PFTs were found suitable to be estimated jointly with the initial CN pools,

whereas this was not the case for C3-grass and C3-crop. For C3-crop, only season-based parameter estimates

provided NEE outputs that corresponded notably better with the observed data than the reference. For

C3-grass, MADdiur, MADann, and RMSEmwere lower with s-MAPs than with 1y MAPs, but ∑NEE was best repre-

sented with the 1y-based parameter estimates. For all PFTs, the uncertainty of the estimated parameters and

the corresponding NEE model output was very low (and probably underestimated) for the 1y-based esti-

mates and notably higher for the season-based parameter estimates.

5. Discussion

5.1. Plausibility of Estimated Parameter Values and Possible Impact on Predicted Climate-Ecosystem

Feedbacks

Previous studies showed that ecological parameters like Vcmax25, mrb, and Q10 vary in time, which can be

related to variations in environmental conditions such as mean annual temperature or soil moisture

[Flanagan and Johnson, 2005; Kätterer et al., 1998; Mo et al., 2008; Reichstein et al., 2005]. Our results support

those findings. For all sites except WÜ, estimates of the eight CLM4.5 parameters varied notably among the

four different seasons. For example, slatop was highest in autumn and winter and lowest in spring and sum-

mer in case of ME. The specific leaf area varies with the development stage of the plant and decreases linearly

with life span, along with leaf nitrogen [e.g., Chapin et al., 2002, p. 111]. In CLM, slatop determines both Vcmax25

(equation (1)) and LAI. Since winter wheat is seeded in early autumn and usually starts growing in this season,

the direction of seasonal course of slatop for ME is plausible. Our results are also in correspondence with Curiel

Yuste et al. [2004], who found that Q10 is strongly influenced by the deciduousness of the vegetation and thus

varies seasonally for mixed temperate forest.

Nevertheless, we do not assume that the actual estimated parameter values mimic “real” measurable para-

meter variations in all cases. For example, despite the fact that the rooting distribution (rb) may change

slightly throughout the year, the high degree of change as for C3-grass and C3-crop (RO and ME) is not con-

sidered reasonable. The strong seasonal variations of estimated rbmay be related to the fact that rb is used to

calculate the effective root fraction which determines the root water uptake [Oleson et al., 2013]. The effective

root fraction is dependent not only on the degree of stomata conductance but also on the matrix potential,

the soil porosity, and the water content in each soil layer [Zeng, 2001]. Thus, these parameters are closely

linked to soil hydrology and differences in the uncertainty of rb, and ψc may be related to differences in

Table 7. RMSEm and RD∑NEE (%) for the Evaluation Year and on the Basis of Half-Hourly NEE Dataa

RMSEm RD∑NEE RD∑NEElow RD∑NEEup RMSEm RD∑NEE RD∑NEElow RD∑NEEup

RO and DE-Gri CLM-1y 4.7 5 4 40 4.7 80 79 86
CLM-1yIS 5.8 96 99 170 - - - -
CLM-s 4.5 17 24 52 4.6 121 69 133
CLM-Ref 5.8 66 - - 4.8 104 - -

ME and DE-Kli CLM-1y 6 122 122 122 5 320 124 320
CLM-1yIS 5.6 119 118 124 - - - -
CLM-s 5.7 99 58 101 3.9 39 4 59
CLM-Ref 6.4 67 - - 4.2 227 - -

WÜ and DE-Tha CLM-1y 6.1 51 49 54 5 61 53 67
CLM-1yIS 5.9 45 37 67 - - - -
CLM-s 6.1 53 44 91 4.9 54 39 128
CLM-Ref 6.2 76 - - 4.7 89 - -

FR-Fon and DE-Hai CLM-1y 5 70 69 70 4.1 56 55 57
CLM-1yIS 5 17 14 20 - - - -
CLM-s 5.2 66 62 71 4 45 42 51
CLM-Ref 5.4 93 - - 4.8 94 - -

aResults are given for the evaluation sites RO, WÜ, ME, and FR-Fon (left) and DE-Gri, DE-Tha, DE-Gri, and DE-Hai (right). The 1y-MAPs, s-MAPs: Maximum a poster-
iori estimates determined based on the whole year time series (1y) and separately for the single seasons (s); IS: with joint estimation of initial state factors; ref.:
reference run with CLM4.5 default parameter values; RD∑NEElow, RD∑NEEup: upper and lower boundary of 95% confidence interval for Δsum.
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soil moisture (e.g., higher sensitivity during dry conditions). We assume that in case of CLM4.5BGC, the

seasonal variations of the estimated parameters were strongly related to (i) a dependency of the

parameters on meteorological variables like temperature and model states such as soil moisture and (ii) a

dependency of those parameters on the initial model states as discussed below.

Since NEE includes GPP and ER, and ER is composed of heterotrophic and autotrophic respiration, compen-

sation effects in terms of the estimated parameter values are likely. Therefore, the single carbon fluxes that

contribute to NEE were not necessarily improved by itself in all cases, even if the model-data mismatch for

NEE was reduced. This is also linked to the finding that seasonal estimates outperformed annual estimates.

For example, during winter, the relative contribution of heterotrophic respiration to the NEE signal is higher

than in summer, when NEE is much more determined by GPP. Therefore, parameters determining hetero-

trophic respiration like Q10 were better constrained in winter than parameters like slatop that mainly deter-

mine GPP and thus were better constrained in spring and summer.

We found that estimated parameter values, e.g. for Q10, were often close to the predefinedminimum or max-

imum bounds of the parameter values (edge-hitting parameters). The finding is in correspondence with

results by Braswell et al. [2005] who estimated parameters with a MCMCmethod based on NEE data for a sim-

ple ecosystem model at the Harvard forest site. Also, Santaren et al. [2007] revealed edge-hitting parameters

when using a gradient-based model-data fusion approach to constrain ORCHIDEE parameters for a pine for-

est with EC data and state that this is an indicator for model-structural deficits. In correspondence with that,

we assume that the tendency of CLM parameters to be estimated toward their upper or lower bounds indi-

cates that parameter estimates compensated for model errors such as missing key processes (e.g., senes-

cence and management in case of winter wheat) or erroneous magnitudes of the initial carbon-nitrogen

pools. Moreover, we emphasize that the estimated CLM parameters are not purely physical. Instead, they

were, e.g., developed based on empirical data obtained under specific conditions, like a temperature range

of 20°C to 35°C in case of bs [Ball et al., 1987], using, e.g., (multi)linear regression analysis. Therefore, they

underlay simplified concepts to represent plant physiology. Another example is Q10, which in CLM is used

as a fitting parameter by default.

Despite the fact that the seasonal variations of parameter values are probably overestimated for most of the

parameters, we found that estimated parameter values are often plausible and more in correspondence with

literature values than the CLM default values. For example, different field studies provide common average

Q10 values: Flanagan and Johnson [2005], showed that Q10 takes values of ~2 ± 0.8 for northern temperate

grassland sites. Kätterer et al. [1998] summarized in a review Q10 values of ~2 ± 0.5 for different agricultural

sites. Rey et al. [2008] found Q10 values between 2.5 and 3.3 for most of the investigated European broadleaf

and deciduous forest sites, including DE-THA (~2.9) and DE-HAI (~2.6). They also highlight that Q10 varies for

Figure 12. Annual NEE sum in the evaluation year simulated with CLM and parameters estimated for the 1 year period
without and with two initial state multipliers (CLM_1y, CLM_1yIS) and separately for four different seasons (CLM_s), in
comparison to the reference run with default parameter values (CLM_Ref).
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different soil layers and respective soil properties. Season-based parameter estimates (autumn and winter

only) and annual parameter values are more in correspondence with these field-based estimates than the

CLM default value of 1.5.

But howwould an increasedQ10 affect predicted carbon stocks and fluxes and climate-ecosystem feedbacks?

CLM4.5 defines a reference temperature of 20°C for maintenance respiration and 25°C for decomposition and

heterotrophic respiration. If low Q10 values are applied and the actual temperature is below the reference

temperature, respiration rates are higher and less sensitive toward temperature compared to highQ10 values.

Above the reference temperature, respiration is more sensitive to temperature and overall higher with higher

Q10 values (illustrated in the supporting information Figure S1). In most parts of central Europe, temperatures

below 20°C predominate throughout the year. This implies that respiration rates are mostly higher for lower

Q10 values and less sensitive to temperature. The suggested increase of Q10 would thus have two major

effects on the LSM carbon cycle.

1. Nutrients would be slower released and available to plants. Thus, along with decreased respiration rates,

simulated GPP decreases, which was also indicated in sensitivity analysis for Q10 (supporting information

Figure S2). This has a compensating effect on the relative change of NEE.

2. The predicted increase of land carbon stocks is considerably higher. This would have a particularly large

impact if the higherQ10 is already applied in themodel spin-up andmay strongly affect predicted climate-

ecosystem feedbacks.

As outlined in section 4.2, among-parameter correlations changed when parameters were estimated jointly

with the two initial state multipliers lCN and dCN (Figures 3a and 3b). This is related to the finding that some

of the estimated parameter values differed significantly, depending on whether or not they were estimated

jointly with lCN and dCN. For FR-Fon, the correlation of lCN and flNR (or slatop) was low, but high for dCN. GPP

is expected to be directly determined by the size of the living CN pools rather than the size of the dead CN

pools. However, living and dead CN pools are strongly linked in CLM. For example, the biogeochemical

cycling includes competition for nitrogen between plants and decomposers. Accordingly, an increase of

the CN content in the dead pools results in a larger amount of nitrogen released during decomposition,

which is then present to fulfill the nutrient demands of the plants. This is linked to the finding that not only

ER but also GPP was highly sensitive to Q10 (supporting information Figure S2). In this regard, also Q10 corre-

lated strongly with bs, which mainly determines GPP. In case of ME, Q10 correlated with slatop which again

correlated very strongly with flNR. Both flNR and slatop correlated very strongly with lCN. This highlights com-

plex interactions among the estimated parameters and initial CN pools. The parameters flNR and slatop deter-

mine Vcmax25. In CLM, Vcmax25 is directly related to the LAI-based upscaling of leaf scale photosynthesis to

ecosystem scale GPP. This explains the correlation of flNR, slatop, and lCN. Thus, probably compensation

effects occur between parameters and between parameters and the initial carbon-nitrogen pools.

The strong dependency of the estimated parameters on the initial carbon and nitrogen pools highlights how

critical the model spin-up is for the prediction of carbon fluxes. This is linked to the results from Carvalhais

et al. [2008] showing that Carnegie-Ames-Stanford approach model parameters such as radiation-use effi-

ciency are strongly affected bymodel initial states and that relaxing the carbon cycle steady state assumption

can improve parameter inversion and model performance. In general, the steady state assumption is very cri-

tical, particularly for crop sites such as ME that have beenmanaged extensively for many centuries. Therefore,

the initial states generated via the model spin-up do not represent the true state of the ecosystem, which is a

well-known problem. More realistic initial states may be obtained from transient simulations, which consider

the historical land cover change. However, often it is not possible to obtain the respective information and

input data required to perform this kind of simulation adequately.

5.2. CLM Performance With Estimated Parameters

By tendency, season-based parameter estimates outperformed annual parameter estimates. Mo et al. [2008]

showed that considering seasonal variations of parameters such as bs and Vcmax25 during model-data fusion

and modeling instead of assuming static parameters can enhance the final results. However, the number of

degrees of freedom is multiplied by 4 in case of the seasonal parameter estimation, and thus, the comparabil-

ity of performance of seasonal and annual parameter estimates is somewhat limited. Nevertheless, since both

seasonal and yearly parameter estimates were evaluated for an independent period, the evaluation approach
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used herein is considered appropriate. A more formal evaluation could be made on the basis of, for example,

the Akaike information criterion.

The uncertainty of the estimated parameters and the corresponding spread of simulated NEE were higher for

the season-based estimates compared to the 1y-based estimates. The latter probably underestimated para-

meter and model uncertainty. An underestimation may partly be related to the likelihood function used

herein (equation (6)), which does not consider heteroscedastic measurement error and may have underesti-

mated the measurement uncertainty. As shown in various studies [e.g., Post et al., 2015; Richardson et al.,

2006], the measurement uncertainty of eddy covariance NEE data increases with the flux magnitude. In terms

of the model uncertainty, a realistic estimate can only be obtained if additional sources of model uncertainty

are taken into account, including initial states and atmospheric forcings.

For C3-crop, annual parameter estimates were not well transferable in time and space. We think that this is

related to the fact that simulated NEE was already strongly flawed in the reference run for this PFT, particu-

larly with respect to errors in the timing of simulated plant onset and offset. The deficits of various LSMs in

representing plant phenology and interannual variations in carbon cycling have been highlighted in previous

studies [Braswell et al., 2005; Keenan et al., 2012a; Richardson et al., 2012;Melaas et al., 2013; Dahlin et al., 2015]

and can significantly alter the simulated annual net productivity [e.g., Hollinger et al., 2004; Richardson et al.,

2009, 2010]. We assume that the major reasons for the deviations of simulated andmeasured NEE for C3-crop

are (i) missing or poorly represented key processes including management and senescence and (ii) initial

conditions that do not represent the true state of the ecosystem for those sites. Senescence as observed at

the ME site at the end of July was related to an abrupt shift from NEE overestimation to a strong NEE under-

estimation. Such a model-data discrepancy is impossible to correct or compensate with annual parameter

estimates but was obviously partly compensated by the season-based parameter estimates. On the other

hand, the ME site is subject to management (seeding, fertilization, harvest, etc.), which in CLM4.5 was not

implemented and validated yet for the PFT “winter wheat” or “winter temperate cereals.” Accordingly, major

drivers of the carbon cycle are missing. Besides, initial carbon-nitrogen pools are probably highly flawed,

since the site has been managed for many centuries. Thus, the steady state assumption is not true. A better

process representation including site management is important before being able to successfully estimate

robust parameters for C3-crops. This seems obvious but is highlighted here, given that LSMs like CLM are

commonly applied to simulate land surface fluxes on continental to global scales, using global default para-

meter values defined for those very broad PFT-groups. However, crops are highly diverse in terms of both

species grown and management practices applied. Accordingly, previous studies showed that crop para-

meters are critical to transfer to other sites [Sus et al., 2013] or different resolutions [Iizumi et al., 2014].

Different studies have already outlined an intra-PFT variability of parameter values, which can hinder their

transferability to other sites [Groenendijk et al., 2011; Kuppel et al., 2012; Xiao et al., 2011]. Parameters esti-

mated for a single EC site cannot generally be transferred to other sites of the same group of PFTs, as the esti-

mated parameters are sometimes overly tuned to site-specific conditions [Kuppel et al., 2012]. Nevertheless,

we showed that in most cases, parameter estimates significantly improved modeled NEE at the evaluation

sites at more than 600 km distance to the parameter estimation sites. This indicates that transferability was

given, although environmental conditions and plant characteristics were presumably different at those sites.

Also for the C3-crop evaluation site DE-Kli, season-based parameter estimates significantly reduced the

model-data mismatch. This is probably related to the fact that here also winter temperate cereals were

grown. Accordingly, we assume that the transferability of LSM parameter values strongly depends on the

representativeness of one particular site, e.g., in terms of site management or plant species. Generalized

statements in this respect are difficult. Results showed that also for C3-grass, parameter estimates did

improve simulated NEE at evaluation site DE-Gri, but not as strongly and clearly as for the forest PFTs.

Thus, the RO site is probably not representative for DE-Gri, which may be related to different environmental

conditions and plant properties at both sites. The finding that parameter estimation was more successful for

the forest sites compared to C3-crop and C3-grass is in correspondence with findings by Kuppel et al. [2014],

who applied ORCHIDEE and a gradient-based data assimilation approach.

In case of RO, the notably better performance with both s-MAPs and 1y-MAPs compared to the reference was

mainly related to the fact that simulated plant onset in spring was shifted ahead, and thus, daytime NEE (GPP)

was much less underestimated in this period. The finding that estimated parameter values had an impact on
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the simulated plant onset is probably due to model internal links with variables or parameters in the stress-

deciduous phenology scheme of CLM4.5, which determines the active growing season for C3-grasses and C3-

crops. Estimated parameters affect not only the simulated carbon-nitrogen pools but also other states like soil

moisture. This again can affect the simulated onset and/or offset.

6. Conclusions

In this work, eight sensitive parameters and two latent variables (multipliers) for the initial carbon and nitro-

gen pools of the Community Land Model v. 4.5 were estimated for four sites in Germany and France.

Parameters were constrained with measured NEE data using the Markov chain Monte Carlo approach

DREAM(zs). Parameter estimates were evaluated for a subsequent year at the same sites, as well as for evalua-

tion sites with corresponding PFTs, separated ~600 km from the estimation sites.

DREAM(zs)-CLM parameter estimates successfully reduced NEE model-data discrepancies, e.g., in terms of

obtaining more reliably estimates of annual NEE sums. Generally, season-based parameter estimates

outperformed parameters that were estimated based on the complete 1 year set of NEE data. This suggests

that taking into account seasonal variations of the estimated parameters can improve the representation of

simulated NEE in CLM.

The NEE model-data mismatch was substantially reduced for all forest sites, both with 1 year- and season-

based estimates. We also showed that for coniferous forest, differences of the posterior parameter values

estimated with or without initial states were considerably lower compared to the other sites. We therefore

conclude that CLM4.5 parameter estimates for evergreen needleleaf forest and broadleaf deciduous forest

were most transferable and reliable.

The posterior parameter estimates were shown to significantly increase the carbon sink strength of the forest

PFTs, which highlights the strong impact of improved parameter values on estimated carbon balances and

climate-ecosystem feedbacks. We therefore conclude that the uncertainty of LSM parameters and initial

states requires explicit consideration in predictions of carbon fluxes and pools.

For C3-crop, parameter estimation was least successful. This is probably related to missing key processes and

drivers like senescence and management, which caused major systematic model-data discrepancies.

Nevertheless, we showed that these discrepancies were partly compensated by season-based parameter

estimates, which significantly improved simulated NEE also for the evaluation site. Accordingly, we assume

that the evaluation sites were affected by similar errors in model structure and initial conditions as the

parameter estimation sites.

This study revealed strong correlations between some of the estimated CLM4.5 parameters and the initial

carbon-nitrogen pools. This elucidates a high level of model complexity and the challenge to estimate or

optimize CLM parameters, which depend on the initial model states. This has major drawbacks in terms of

transferring site-based parameter estimates to other sites or larger scales. Because complex land surface

models like CLM contain hundreds of parameters in order to simulate the coupled carbon, nitrogen, water,

and energy cycles, overparameterization is a common problem in those models. In order to better constrain

LSMs and eventually reduce among-parameter correlations, we consider an extension of measurements at

EC-sites, including, e.g., rooting depths and densities, leaf area indices, and leaf C:N ratios at EC

sites important.

Moreover, we conclude that goodness-of-fit indices like the RMSE by itself are not sufficient to evaluate the

representation of modeled NEE. The model reproduction of the diurnal and annual NEE cycles deserves a

critical evaluation as well.

References
Arora, V. K., et al. (2013), Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models, J. Clim., 26, 5289–5314,

doi:10.1175/JCLI-D-12-00494.1.
Baker, I. T., L. Prihodko, A. S. Denning, M. Goulden, S. Miller, and H. R. Da Rocha (2008), Seasonal drought stress in the Amazon: Reconciling

models and observations, J. Geophys. Res., 113, G00B01, doi:10.1029/2007JG000644.
Baldauf, M., J. Förstner, S. Klink, T. Reinhardt, C. Schraff, A. Seifert, K. Stephan, and D. Wetterdienst (2009), Kurze Beschreibung des Lokal-Modells

Kürzestfrist COSMO-DE (LMK) und seiner Datenbanken auf dem Datenserver des DWD, Deutscher Wetterdienst, Geschäftsbereich Forschung
und Entwicklung, Offenbach, Germany.

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG003297

POST ET AL. ESTIMATION OF CLM PARAMETERS 686

Acknowledgments

This work was carried out with the
funding of the EU FP7 project ExpeER
(grant agreement 262060) that is sup-
ported by the European Commission
through the Seventh Framework
Programme for Research and Technical
Development, as well as the
Transregional Collaborative Research
Centre 32 (TR32). The measurement
infrastructure providing EC data for
Rollesboich, Merzenhausen, and
Wüstebach was supported by TR32
funded by the German Research
Foundation (DFG) and Terrestrial
Environmental Observatories (TERENO)
funded by the Helmholtz Association. In
particular we thank Marius Schmidt,
Roland Baatz, Xujun Han, and Tim
Reichenau for their cooperation and
support. We kindly thank Karl Schneider
from the Department of Geography,
University of Cologne, Germany, for
providing us with data of the eddy cov-
ariance station of the Merzenhausen
site. We also gratefully acknowledge
Pramod Kumbhar (École polytechnique
fédérale de Lausanne, Switzerland) and
Tim Hoar (National Atmospheric
Research Center, Boulder CO, USA) for
their support. For allocating the
FLUXNET data used in this study, we are
exceptionally thankful to CarboExtreme
(EU-FP7) and Christian Bernhofer (chris-
tian.bernhofer@tu-dresden.de) (DE-Tha,
DE-Gri, and DE-Kli) as well as
CarboEuropeIP (EU-FP6) and Eric
Dufrene (eric.dufrene@u-psud.fr) (Fr-
Fon). The authors gratefully acknowl-
edge the computing time granted on
the supercomputer JUROPA by the
Jülich Supercomputing Centre (JSC).
Parameter files are listed at https://uni-
koeln.sciebo.de/index.php/s/
s8JrTOziXP31EBd, and exemplary scripts
for the CLM setup are deposited at
https://uni-koeln.sciebo.de/index.php/
s/S2A5EK54KOj0msg. DREAM(zs) is an
open source package and can be
downloaded from http://math.lanl.gov/
~vrugt/software/. Additional data may
be obtained from Hanna Post (h.pos-
t@uni-koeln.de).



Ball, J. T., I. E. Woodrow, and J. A. Berry (1987), Amodel predicting stomatal conductance and its contribution to the control of photosynthesis
under different environmental conditions, in Progress in Photosynthesis Research, edited by J. Biggins, pp. 221–224 , Springer, Netherlands.

Ball, T. J., and J. A. Berry (1982), Ci/Cs ratio: A basis for Predicting Stomatal Control of Photosynthesis, vol. 81, pp. 88–92, Year book-Carnegie
Institution of Washington.

Beven, K., and J. Freer (2001), Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental
systems using the GLUE methodology, J. Hydrol., 249, 11–29, doi:10.1016/S0022-1694(01)00421-8.

Bilionis, I., B. A. Drewniak, and E. M. Constantinescu (2015), Crop physiology calibration in the CLM, Geosci. Model Dev., 8, 1071–1083.
Bonan, G. B., P. J. Lawrence, K. W. Oleson, S. Levis, M. Jung, M. Reichstein, D. M. Lawrence, and S. C. Swenson (2011), Improving canopy

processes in the Community LandModel version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data, J. Geophys. Res.,
116, G02014, doi:10.1029/2010JG001593.

Bonan, G. B., M. Williams, R. A. Fisher, and K. W. Oleson (2014), Modeling stomatal conductance in the earth system: linking leaf water-use
efficiency and water transport along the soil–plant–atmosphere continuum, Geosci. Model Dev., 7, 2193–2222.

Braswell, B. H., W. J. Sacks, E. Linder, and D. S. Schimel (2005), Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux
model with eddy covariance net ecosystem exchange observations, Global Change Biol., 11, 335–355, doi:10.1111/j.1365-2486.2005.00897.x.

Brovkin, V., et al. (2013), Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections
for the twenty-first century, J. Clim., 26, 6859–6881.

Carvalhais, N., et al. (2008), Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse
parameter retrieval, Global Biogeochem. Cycles, 22, Gb2007, doi:10.1029/2007GB003033.

Chai, T., and R. R. Draxler (2014), Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the
literature, Geosci. Model Dev., 7, 1247–1250.

Chapin, F. S., III, P. A. Matson, and H. A. Mooney (2002), Principles of Terrestrial Ecosystem Ecology, Springer, New York.
Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry (1991), Physiological and environmental regulation of stomatal conductance, photosynthesis

and transpiration: A model that includes a laminar boundary layer, Agric. For. Meteorol., 54, 107–136, doi:10.1016/0168-1923(91)90002-8.
Curiel Yuste, J., I. A. Janssens, A. Carrara, and R. Ceulemans (2004), Annual Q10 of soil respiration reflects plant phenological patterns as well

as temperature sensitivity, Global Change Biol., 10, 161–169, doi:10.1111/j.1529-8817.2003.00727.x.
Dahlin, K. M., R. A. Fisher, and P. J. Lawrence (2015), Environmental drivers of drought deciduous phenology in the Community Land Model,

Biogeosci. Discuss., 12, 5803–5839.
Dai, Y., R. E. Dickinson, and Y.-P. Wang (2004), A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance,

J. Clim., 17, 2281–2299, doi:10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.
Dijk, A. V., A. F. Moene, and H. A. R. DeBruin (2004), The Principles of Surface Flux Physics: Theory, Practice and Description of the ECPACK Library,

Meteorology and Air Quality Group of Wageningen University, Wageningen.
Flanagan, L. B., and B. G. Johnson (2005), Interacting effects of temperature, soil moisture and plant biomass production on ecosystem

respiration in a northern temperate grassland, Agric. For. Meteorol., 130, 237–253, doi:10.1016/j.agrformet.2005.04.002.
Foereid, B., D. S. Ward, N. Mahowald, E. Paterson, and J. Lehmann (2014), The sensitivity of carbon turnover in the Community Land Model to

modified assumptions about soil processes, Earth Syst. Dyn., 5(1), 211–221.
Gelman, A., and D. B. Rubin (1992), Inference from iterative simulation using multiple sequences, Stat. Sci., 457–472.
Göhler, M., J. Mai, and M. Cuntz (2013), Use of eigendecomposition in a parameter sensitivity analysis of the Community Land Model, J.

Geophys. Res. Biogeosci., 118, 904–921, doi:10.1002/jgrg.20072.
Graf, A., H. R. Bogena, C. Drüe, H. Hardelauf, T. Pütz, G. Heinemann, and H. Vereecken (2014), Spatiotemporal relations between water budget

components and soil water content in a forested tributary catchment, Water Resour. Res., 50, 4837–4857, doi:10.1002/2013WR014516.
Groenendijk, M., et al. (2011), Assessing parameter variability in a photosynthesis model within and between plant functional types using

global Fluxnet eddy covariance data, Agric. For. Meteorol., 151, 22–38.
Gupta, H. V., S. Sorooshian, and P. O. Yapo (1998), Toward improved calibration of hydrologic models: Multiple and noncommensurable

measures of information, Water Resour. Res., 34, 751–763, doi:10.1029/97WR03495.
Hararuk, O., J. Xia, and Y. Luo (2014), Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov

chain Monte Carlo method, J. Geophys. Res. Biogeosci., 119, 403–417, doi:10.1002/2013JG002535.
He, Y., Q. Zhuang, A. David McGuire, Y. Liu, and M. Chen (2013), Alternative ways of using field-based estimates to calibrate ecosystem

models and their implications for carbon cycle studies, J. Geophys. Res. Biogeosci., 118, 983–993, doi:10.1002/jgrg.20080.
Hill, T. C., E. Ryan, and M. Williams (2012), The use of CO2 flux time series for parameter and carbon stock estimation in carbon cycle research,

Global Change Biol., 18, 179–193, doi:10.1111/j.1365-2486.2011.02511.x.
Hollinger, D. Y., et al. (2004), Spatial and temporal variability in forest–atmosphere CO2 exchange, Global Change Biol., 10, 1689–1706,

doi:10.1111/j.1365-2486.2004.00847.x.
Iizumi, T., Y. Tanaka, G. Sakurai, Y. Ishigooka, and M. Yokozawa (2014), Dependency of parameter values of a crop model on the spatial scale

of simulation, J. Adv. Model. Earth Syst., 6, 527–540, doi:10.1002/2014MS000311.
Jenkinson, D. S., and K. Coleman (2008), The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover, Eur. J. Soil Sci., 59,

400–413, doi:10.1111/j.1365-2389.2008.01026.x.
Kato, T., W. Knorr, M. Scholze, E. Veenendaal, T. Kaminski, J. Kattge, and N. Gobron (2013), Simultaneous assimilation of satellite and eddy

covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana, Biogeosciences, 10,
789–802, doi:10.5194/bg-10-789-2013.

Kätterer, T., M. Reichstein, O. Andrén, and A. Lomander (1998), Temperature dependence of organic matter decomposition: a critical review
using literature data analyzed with different models, Biol. Fertil. Soils, 27, 258–262.

Keenan, T. F., et al. (2012a), Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange, Global
Change Biol., 18, 1971–1987, doi:10.1111/j.1365-2486.2012.02678.x.

Keenan, T. F., E. Davidson, A. M. Moffat, W. Munger, and A. D. Richardson (2012b), Using model-data fusion to interpret past trends, and
quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling, Global Change Biol., 18, 2555–2569, doi:10.1111/
j.1365-2486.2012.02684.x.

Keenan, T. F., E. A. Davidson, J. W. Munger, and A. D. Richardson (2013), Rate my data: quantifying the value of ecological data for the
development of models of the terrestrial carbon cycle, Ecol. Appl., 23, 273–286, doi:10.1890/12-0747.1.

Kirschbaum, M. U. F. (1995), The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil
organic C storage, Soil Biol. Biochem., 27, 753–760.

Kirschbaum, M. U. F. (2010), The temperature dependence of organic matter decomposition: Seasonal temperature variations turn a sharp
short-term temperature response into a more moderate annually averaged response, Global Change Biol., 16, 2117–2129.

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG003297

POST ET AL. ESTIMATION OF CLM PARAMETERS 687



Knorr, W., and J. Kattge (2005), Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte
Carlo sampling, Global Change Biol., 11, 1333–1351, doi:10.1111/j.1365-2486.2005.00977.x.

Koven, C. D., W. J. Riley, Z. M. Subin, J. Y. Tang, M. S. Torn, W. D. Collins, G. B. Bonan, D. M. Lawrence, and S. C. Swenson (2013), The effect of
vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4, Biogeosciences, 10, 7109–7131,
doi:10.5194/bg-10-7109-2013.

Kuppel, S., P. Peylin, F. Chevallier, C. Bacour, F. Maignan, and A. D. Richardson (2012), Constraining a global ecosystem model with multi-site
eddy-covariance data, Biogeosci. Discuss., 9, 3317–3380, doi:10.5194/bgd-9-3317-2012.

Kuppel, S., F. Chevallier, and P. Peylin (2013), Quantifying the model structural error in carbon cycle data assimilation systems, Geosci. Model

Dev., 6, 45–55, doi:10.5194/gmd-6-45-2013.
Kuppel, S., P. Peylin, F. Maignan, F. Chevallier, G. Kiely, L. Montagnani, and A. Cescatti (2014), Model–data fusion across ecosystems: From

multisite optimizations to global simulations, Geosci. Model Dev., 7, 2581–2597, doi:10.5194/gmd-7-2581-2014.
Laloy, E., and J. A. Vrugt (2012), High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(zs) and high-

performance computing, Water Resour. Res., 48, W01526, doi:10.1029/2011WR010608.
Leifeld, J., and J. Fuhrer (2005), The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter

quality, Biogeochemistry, 75, 433–453, doi:10.1007/s10533-005-2237-4.
Luo, Y., E. Weng, X. Wu, C. Gao, X. Zhou, and L. Zhang (2009), Parameter identifiability, constraint, and equifinality in data assimilation with

ecosystem models, Ecol. Appl., 19, 571–574, doi:10.1890/08-0561.1.
Mao, J., D. M. Ricciuto, P. E. Thornton, J. M. Warren, A. W. King, X. Shi, C. M. Iversen, and R. J. Norby (2016), Evaluating the Community Land

Model in a pine stand with shading manipulations and
13
CO2 labeling, Biogeosciences, 13, 641–657, doi:10.5194/bg-13-641-2016.

Mauder, M., and T. Foken (2011), Documentation and Instruction Manual of the Eddy Covariance Software Package TK3, Univ., Abt.
Mikrometeorologie, Bayreuth.

Mauder, M., M. Cuntz, C. Drüe, A. Graf, C. Rebmann, H. P. Schmid, M. Schmidt, and R. Steinbrecher (2013), A strategy for quality and uncertainty
assessment of long-term eddy-covariance measurements, Agric. For. Meteorol., 169, 122–135.

Melaas, E. K., A. D. Richardson, M. A. Friedl, D. Dragoni, C. M. Gough, M. Herbst, L. Montagnani, and E. Moors (2013), Using FLUXNET data to
improve models of springtime vegetation activity onset in forest ecosystems, Agric. For. Meteorol., 171–172, 46–56, doi:10.1016/j.
agrformet.2012.11.018.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953), Equation of state calculations by fast computing
machines, J. Chem. Phys., 21, 1087–1092, doi:10.1063/1.1699114.

Mitchell, S., K. Beven, and J. Freer (2009), Multiple sources of predictive uncertainty in modeled estimates of net ecosystem CO2 exchange,
Ecol. Model., 220, 3259–3270, doi:10.1016/j.ecolmodel.2009.08.021.

Mo, X., J. M. Chen, W. Ju, and T. A. Black (2008), Optimization of ecosystem model parameters through assimilating eddy covariance flux data
with an ensemble Kalman filter, Ecol. Model., 217, 157–173.

Oleson, K., et al. (2013), Technical description of version 4.5 of the Community Land Model (CLM).
Piao, S., et al. (2013), Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends, Global Change

Biol., 19, 2117–2132, doi:10.1111/gcb.12187.
Post, H., H. J. Hendricks Franssen, A. Graf, M. Schmidt, and H. Vereecken (2015), Uncertainty analysis of eddy covariance CO2 flux measure-

ments for different EC tower distances using an extended two-tower approach, Biogeosciences, 12, 1205–1221.
Post, J., F. F. Hattermann, V. Krysanova, and F. Suckow (2008), Parameter and input data uncertainty estimation for the assessment of long-

term soil organic carbon dynamics, Environ. Model. Software, 23, 125–138, doi:10.1016/j.envsoft.2007.05.010.
Quéré, C. L., R. J. Andres, T. Boden, T. Conway, R. A. Houghton, J. I. House, G. Marland, G. P. Peters, G. Werf, and A. Ahlström (2012), The global

carbon budget 1959–2011, Earth Syst. Sci. Data Discuss., 5, 1107–1157.
Raupach, M. R., P. J. Rayner, D. J. Barrett, R. S. DeFries, M. Heimann, D. S. Ojima, S. Quegan, and C. C. Schmullius (2005), Model-data synthesis in

terrestrial carbon observation: methods, data requirements and data uncertainty specifications, Global Change Biol., 11, 378–397.
Reichstein, M., J.-A. Subke, A. C. Angeli, and J. D. Tenhunen (2005), Does the temperature sensitivity of decomposition of soil organic matter

depend upon water content, soil horizon, or incubation time?, Global Change Biol., 11, 1754–1767, doi:10.1111/j.1365-2486.2005.001010.x.
Rey, A., E. Pegoraro, and P. G. Jarvis (2008), Carbon mineralization rates at different soil depths across a network of European forest sites

(FORCAST), Eur. J. Soil Sci., 59, 1049–1062, doi:10.1111/j.1365-2389.2008.01065.x.
Richardson, A. D., et al. (2006), A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes, Agric. For.

Meteorol., 136, 1–18, doi:10.1016/j.agrformet.2006.01.007.
Richardson, A. D., D. Y. Hollinger, J. D. Aber, S. V. Ollinger, and B. H. Braswell (2007), Environmental variation is directly responsible for short- but

not long-term variation in forest-atmosphere carbon exchange, Global Change Biol., 13, 788–803, doi:10.1111/j.1365-2486.2007.01330.x.
Richardson, A. D., D. Y. Hollinger, D. B. Dail, J. T. Lee, J. W. Munger, and J. O’keefe (2009), Influence of spring phenology on seasonal and

annual carbon balance in two contrasting New England forests, Tree Physiol., 29, 321–331.
Richardson, A. D., et al. (2010), Influence of spring and autumn phenological transitions on forest ecosystem productivity, Phil. Trans. R. Soc. B,

365, 3227–3246, doi:10.1098/rstb.2010.0102.
Richardson, A. D., et al. (2012), Terrestrial biosphere models need better representation of vegetation phenology: Results from the North

American carbon program site synthesis, Global Change Biol., 18, 566–584, doi:10.1111/j.1365-2486.2011.02562.x.
Rosolem, R., H. V. Gupta, W. J. Shuttleworth, L. G. G. de Gonçalves, and X. Zeng (2013), Towards a comprehensive approach to parameter

estimation in land surface parameterization schemes, Hydrol. Process., 27, 2075–2097, doi:10.1002/hyp.9362.
Santaren, D., P. Peylin, N. Viovy, and P. Ciais (2007), Optimizing a process-based ecosystem model with eddy-covariance flux measurements:

A pine forest in southern France, Global Biogeochem. Cycles, 21, GB2013, doi:10.1029/2006GB002834.
Santaren, D., P. Peylin, C. Bacour, P. Ciais, and B. Longdoz (2013), Ecosystem model optimization using in-situ flux observations: Benefit of

Monte-Carlo vs. variational schemes and analyses of the year-to-year model performances, Biogeosci. Discuss., 10, 18,009–18,064,
doi:10.5194/bgd-10-18009-2013.

Schulz, K., A. Jarvis, K. Beven, and H. Soegaard (2001), The predictive uncertainty of land surface fluxes in response to increasing ambient
carbon dioxide, J. Clim., 14, 2551–2562, doi:10.1175/1520-0442(2001)014<2551:TPUOLS>2.0.CO;2.

Sus, O., M. W. Heuer, T. P. Meyers, and M. Williams (2013), A data assimilation framework for constraining upscaled cropland carbon flux
seasonality and biometry with MODIS, Biogeosciences, 10, 2451–2466.

Ter Braak, C. J. F., and J. A. Vrugt (2008), Differential evolution Markov chain with snooker updater and fewer chains, Stat. Comput., 18,
435–446, doi:10.1007/s11222-008-9104-9.

Thornton, P. E., and N. A. Rosenbloom (2005), Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon
and nitrogen cycle model, Ecol. Model., 189, 25–48.

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG003297

POST ET AL. ESTIMATION OF CLM PARAMETERS 688



Thornton, P. E., and N. E. Zimmermann (2007), An improved canopy integration scheme for a land surface model with prognostic canopy
structure, J. Clim., 20, 3902–3923.

Thornton, P. E., et al. (2002), Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in
evergreen needleleaf forests, Agric. For. Meteorol., 113, 185–222.

Thornton, P. E., S. C. Doney, K. Lindsay, J. K. Moore, N. Mahowald, J. T. Randerson, I. Fung, J. F. Lamarque, J. J. Feddema, and Y. H. Lee (2009),
Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: Results from an atmosphere-ocean general circulation model,
Biogeosciences, 6, 2099–2120.

Todd-Brown, K. E. O., J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison (2013), Causes of variation in soil
carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736.

Todd-Brown, K. E. O., et al. (2014), Changes in soil organic carbon storage predicted by Earth system during the 21st century, Biogeosciences,
11, 2341–2356.

Verbeeck, H., P. Peylin, C. Bacour, D. Bonal, K. Steppe, and P. Ciais (2011), Seasonal patterns of CO2 fluxes in Amazon forests: Fusion of eddy
covariance data and the ORCHIDEE model, J. Geophys. Res., 116, G02018, doi:10.1029/2010JG001544.

Vereecken, H., et al. (2016), Modeling soil processes: Review, key challenges, and new perspectives, Vadose Zone J., 15(5), 1–57.
Vrugt, J. A. (2016), Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementa-

tion, Environ. Model. Software, 75, 273–316, doi:10.1016/j.envsoft.2015.08.013.
Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten (2005), Improved treatment of uncertainty in hydrologic modeling:

Combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, W01017, doi:10.1029/2004WR003059.
Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson (2008), Treatment of input uncertainty in hydrologic modeling: Doing

hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09, doi:10.1029/2007WR006720.
Vrugt, J. A., C. J. F. Ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman, and D. Higdon (2009), Accelerating Markov chain Monte Carlo

simulation by differential evolution with self-adaptive randomized subspace sampling, Int. J. Nonlin. Sci. Num. Simul., 10, 273–290.
Wang, Y. P., D. Baldocchi, R. Leuning, E. Falge, and T. Vesala (2007), Estimating parameters in a land-surface model by applying nonlinear

inversion to eddy covariance flux measurements from eight FLUXNET sites, Global Change Biol., 13, 652–670, doi:10.1111/j.1365-
2486.2006.01225.x.

Wang, Y.-P., R. Leuning, H. A. Cleugh, and P. A. Coppin (2001), Parameter estimation in surface exchange models using nonlinear inversion:
How many parameters can we estimate and which measurements are most useful?, Global Change Biol., 7, 495–510, doi:10.1046/j.1365-
2486.2001.00434.x.

Williams, M., P. A. Schwarz, B. E. Law, J. Irvine, and M. R. Kurpius (2005), An improved analysis of forest carbon dynamics using data assim-
ilation, Global Change Biol., 11, 89–105, doi:10.1111/j.1365-2486.2004.00891.x.

Williams, M., et al. (2009), Improving land surface models with FLUXNET data, Biogeosciences, 6, 1341–1359.
Xiao, J., K. J. Davis, N. M. Urban, and K. Keller (2014), Uncertainty in model parameters and regional carbon fluxes: A model-data fusion

approach, Agric. For. Meteorol., 189–190, 175–186, doi:10.1016/j.agrformet.2014.01.022.
Xiao, J. F., K. J. Davis, N. M. Urban, K. Keller, and N. Z. Saliendra (2011), Upscaling carbon fluxes from towers to the regional scale: Influence of

parameter variability and land cover representation on regional flux estimates, J. Geophys. Res., 116, G00J06, doi:10.1029/2010JG001568.
Xu, T., L. White, D. Hui, and Y. Luo (2006), Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter

estimation and model prediction, Global Biogeochem. Cycles, 20, GB2007, doi:10.1029/2005GB002468.
Zacharias, S., et al. (2011), A network of terrestrial environmental observatories in Germany, Vadose Zone J., 10, 955–973, doi:10.2136/

vzj2010.0139.
Zeng, X. (2001), Global vegetation root distribution for land modeling, J. Hydrometeorol., 2, 525–530, doi:10.1175/1525-7541(2001)

002<0525:GVRDFL>2.0.CO;2.

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG003297

POST ET AL. ESTIMATION OF CLM PARAMETERS 689


