001     829875
005     20220930130122.0
024 7 _ |2 doi
|a 10.2136/vzj2016.07.0064
024 7 _ |2 Handle
|a 2128/14377
024 7 _ |a WOS:000397092300001
|2 WOS
024 7 _ |a altmetric:18074712
|2 altmetric
037 _ _ |a FZJ-2017-03491
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)156558
|a Gottselig, Nina
|b 0
|e Corresponding author
245 _ _ |a Phosphorus Binding to Nanoparticles and Colloids in Forest Stream Waters
260 _ _ |a Madison, Wis.
|b SSSA
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1494413614_6333
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Elemental contents in catchment headwaters are indicative of the load of nutrients and minerals cycled or released from ecosystems, yet little is known about natural colloids (1–1000 nm) and especially natural nanoparticles (NNP, 1–100 nm) as nutrient carriers in forested headwater streams. We hypothesize that the majority of P is bound to NNP in forest streams but that their size and composition varies for different forested headwater systems. Four forested sites in Germany and one in Norway, which differ in total P content, were sampled for stream water and analyzed for colloids. The samples were fractionated using field flow fractionation coupled to inductively coupled plasma–mass spectrometry and an organic C detector. The results showed that NNP and colloids from all sites could be separated into three distinct fractions (approximately 1–20 nm, >20–60 nm, and >60 nm). The elemental concentrations of P, organic C, Al, Si, Fe, and Mn in the fractions differed among the five sites. However, cluster analysis showed that each fraction had unique elemental signatures with different preferential P binding partners. Phosphorus was preferentially associated with Fe in the smallest size fraction, with an increasing contribution of organic-C-associated P as the fraction size increased. The largest fraction was dominated by clay minerals. Also, the data indicated that the relative contribution of the NNP and colloidal fractions for ecosystem nutrient supply rises as total P concentrations decline. The study highlighted the still underestimated importance of NNP for matter transport in forest streams and thus P cycling.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)157638
|a Nischwitz, Volker
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Meyn, Thomas
|b 2
700 1 _ |0 P:(DE-Juel1)129427
|a Amelung, Wulf
|b 3
700 1 _ |0 P:(DE-Juel1)145865
|a Bol, Roland
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Halle, Cynthia
|b 5
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, Harry
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Siemens, Jan
|b 7
700 1 _ |0 P:(DE-Juel1)129484
|a Klumpp, Erwin
|b 8
773 _ _ |0 PERI:(DE-600)2088189-7
|a 10.2136/vzj2016.07.0064
|g Vol. 16, no. 3, p. 0 -
|n 3
|p 0 -
|t Vadose zone journal
|v 16
|x 1539-1663
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/829875/files/vzj-16-3-vzj2016.07.0064.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829875/files/vzj-16-3-vzj2016.07.0064.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829875/files/vzj-16-3-vzj2016.07.0064.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829875/files/vzj-16-3-vzj2016.07.0064.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829875/files/vzj-16-3-vzj2016.07.0064.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829875/files/vzj-16-3-vzj2016.07.0064.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:829875
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156558
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157638
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129427
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145865
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129549
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129484
|a Forschungszentrum Jülich
|b 8
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b VADOSE ZONE J : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21