Hauptseite > Publikationsdatenbank > Durable direct ethanol anode-supported solid oxide fuel cell > print |
001 | 829878 | ||
005 | 20240711085606.0 | ||
024 | 7 | _ | |a 10.1016/j.apenergy.2017.04.086 |2 doi |
024 | 7 | _ | |a 0306-2619 |2 ISSN |
024 | 7 | _ | |a 1872-9118 |2 ISSN |
024 | 7 | _ | |a WOS:000403031800013 |2 WOS |
037 | _ | _ | |a FZJ-2017-03494 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Steil, M. C. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Durable direct ethanol anode-supported solid oxide fuel cell |
260 | _ | _ | |a Amsterdam [u.a.] |c 2017 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1494505189_10083 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Anode-supported solid oxide fuel cells accumulating more than 700 h of stable operation on dry ethanol with high current output are reported. A highly active ceria-based catalytic layer deposited onto the anode efficiently converts the primary fuel into hydrogen using the electrochemically generated steam. On the other hand, standard fuel cells without the catalytic layer collapse because of carbon deposit formation within the initial 5 h of operation with ethanol. The nanostructured ceria-based catalyst forms a continuous porous layer (∼25 µm thick) over the Ni-based anode support that has no apparent influence on the fuel cell operation and prevents carbon deposit formation. Moreover, the catalytic layer promotes overall steam reforming reactions of ethanol that result in similar current outputs in both hydrogen and ethanol fuels. The stability of single cells, with relatively large active area (8 cm2), confirms the feasibility of a catalytic layer for internal reforming of biofuels in solid oxide fuel cells. The experimental results provide a significant step towards the practical application of direct ethanol solid oxide fuel cells. |
536 | _ | _ | |a 135 - Fuel Cells (POF3-135) |0 G:(DE-HGF)POF3-135 |c POF3-135 |f POF III |x 0 |
536 | _ | _ | |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602) |0 G:(DE-Juel1)SOFC-20140602 |c SOFC-20140602 |f SOFC |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Nobrega, S. D. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Georges, S. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Gelin, P. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Uhlenbruck, S. |0 P:(DE-Juel1)129580 |b 4 |u fzj |
700 | 1 | _ | |a Fonseca, F. C. |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.apenergy.2017.04.086 |g Vol. 199, p. 180 - 186 |0 PERI:(DE-600)2000772-3 |p 180 - 186 |t Applied energy |v 199 |y 2017 |x 0306-2619 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:829878 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129580 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-135 |2 G:(DE-HGF)POF3-100 |v Fuel Cells |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL ENERG : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b APPL ENERG : 2015 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|