001     829878
005     20240711085606.0
024 7 _ |a 10.1016/j.apenergy.2017.04.086
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a WOS:000403031800013
|2 WOS
037 _ _ |a FZJ-2017-03494
082 _ _ |a 620
100 1 _ |a Steil, M. C.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Durable direct ethanol anode-supported solid oxide fuel cell
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1494505189_10083
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Anode-supported solid oxide fuel cells accumulating more than 700 h of stable operation on dry ethanol with high current output are reported. A highly active ceria-based catalytic layer deposited onto the anode efficiently converts the primary fuel into hydrogen using the electrochemically generated steam. On the other hand, standard fuel cells without the catalytic layer collapse because of carbon deposit formation within the initial 5 h of operation with ethanol. The nanostructured ceria-based catalyst forms a continuous porous layer (∼25 µm thick) over the Ni-based anode support that has no apparent influence on the fuel cell operation and prevents carbon deposit formation. Moreover, the catalytic layer promotes overall steam reforming reactions of ethanol that result in similar current outputs in both hydrogen and ethanol fuels. The stability of single cells, with relatively large active area (8 cm2), confirms the feasibility of a catalytic layer for internal reforming of biofuels in solid oxide fuel cells. The experimental results provide a significant step towards the practical application of direct ethanol solid oxide fuel cells.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nobrega, S. D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Georges, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gelin, P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Uhlenbruck, S.
|0 P:(DE-Juel1)129580
|b 4
|u fzj
700 1 _ |a Fonseca, F. C.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.apenergy.2017.04.086
|g Vol. 199, p. 180 - 186
|0 PERI:(DE-600)2000772-3
|p 180 - 186
|t Applied energy
|v 199
|y 2017
|x 0306-2619
856 4 _ |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829878
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129580
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL ENERG : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21