000829923 001__ 829923
000829923 005__ 20210129230402.0
000829923 0247_ $$2doi$$a10.1016/j.jhydrol.2017.04.015
000829923 0247_ $$2ISSN$$a0022-1694
000829923 0247_ $$2ISSN$$a1879-2707
000829923 0247_ $$2WOS$$aWOS:000403855500056
000829923 037__ $$aFZJ-2017-03529
000829923 041__ $$aEnglish
000829923 082__ $$a690
000829923 1001_ $$0P:(DE-HGF)0$$aPeters, Andre$$b0$$eCorresponding author
000829923 245__ $$aTowards an unbiased filter routine to determine precipitation and evapotranspiration from high precision lysimeter measurements
000829923 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000829923 3367_ $$2DRIVER$$aarticle
000829923 3367_ $$2DataCite$$aOutput Types/Journal article
000829923 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1494566180_30059
000829923 3367_ $$2BibTeX$$aARTICLE
000829923 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829923 3367_ $$00$$2EndNote$$aJournal Article
000829923 520__ $$aWeighing lysimeters are considered to be the best means for a precise measurement of water fluxes at the interface between the soil-plant system and the atmosphere. Any decrease of the net mass of the lysimeter can be interpreted as evapotranspiration (ET), any increase as precipitation (P). However, the measured raw data need to be filtered to separate real mass changes from noise. Such filter routines typically apply two steps: (i) a low pass filter, like moving average, which smooths noisy data, and (ii) a threshold filter that separates significant from insignificant mass changes. Recent developments of these filters have identified and solved some problems regarding bias in the data processing. A remaining problem is that each change in flow direction is accompanied with a systematic flow underestimation due to the threshold scheme. In this contribution, we analyze this systematic effect and show that the absolute underestimation is independent of the magnitude of a flux event. Thus, for small events, like dew or rime formation, the relative error is high and can reach the same magnitude as the flux itself. We develop a heuristic solution to the problem by introducing a so-called “snap routine”. The routine is calibrated and tested with synthetic flux data and applied to real measurements obtained with a precision lysimeter for a 10-month period. The heuristic snap routine effectively overcomes these problems and yields an almost unbiased representation of the real signal.
000829923 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000829923 588__ $$aDataset connected to CrossRef
000829923 7001_ $$0P:(DE-Juel1)158034$$aGroh, Jannis$$b1
000829923 7001_ $$0P:(DE-HGF)0$$aSchrader, Frederik$$b2
000829923 7001_ $$0P:(DE-HGF)0$$aDurner, Wolfgang$$b3
000829923 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4
000829923 7001_ $$0P:(DE-Juel1)129523$$aPütz, Thomas$$b5
000829923 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2017.04.015$$gVol. 549, p. 731 - 740$$p731 - 740$$tJournal of hydrology$$v549$$x0022-1694$$y2017
000829923 8564_ $$uhttps://juser.fz-juelich.de/record/829923/files/1-s2.0-S0022169417302330-main.pdf$$yRestricted
000829923 8564_ $$uhttps://juser.fz-juelich.de/record/829923/files/1-s2.0-S0022169417302330-main.gif?subformat=icon$$xicon$$yRestricted
000829923 8564_ $$uhttps://juser.fz-juelich.de/record/829923/files/1-s2.0-S0022169417302330-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829923 8564_ $$uhttps://juser.fz-juelich.de/record/829923/files/1-s2.0-S0022169417302330-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829923 8564_ $$uhttps://juser.fz-juelich.de/record/829923/files/1-s2.0-S0022169417302330-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829923 8564_ $$uhttps://juser.fz-juelich.de/record/829923/files/1-s2.0-S0022169417302330-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829923 909CO $$ooai:juser.fz-juelich.de:829923$$pVDB:Earth_Environment$$pVDB
000829923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000829923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158034$$aForschungszentrum Jülich$$b1$$kFZJ
000829923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000829923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129523$$aForschungszentrum Jülich$$b5$$kFZJ
000829923 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000829923 9141_ $$y2017
000829923 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829923 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829923 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROL : 2015
000829923 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829923 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829923 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829923 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829923 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829923 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829923 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829923 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000829923 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000829923 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000829923 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829923 920__ $$lyes
000829923 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000829923 980__ $$ajournal
000829923 980__ $$aVDB
000829923 980__ $$aI:(DE-Juel1)IBG-3-20101118
000829923 980__ $$aUNRESTRICTED