001     829926
005     20240709094339.0
024 7 _ |2 doi
|a 10.1080/02670836.2016.1244039
024 7 _ |2 ISSN
|a 0026-0681
024 7 _ |2 ISSN
|a 0267-0836
024 7 _ |2 ISSN
|a 0306-3453
024 7 _ |2 ISSN
|a 0307-1693
024 7 _ |2 ISSN
|a 1743-2847
024 7 _ |a WOS:000400195200004
|2 WOS
037 _ _ |a FZJ-2017-03532
082 _ _ |a 600
100 1 _ |0 P:(DE-Juel1)129742
|a Kuhn, B.
|b 0
245 _ _ |a Microstructure of intermetallic particle strengthened high-chromium fully ferritic steels
260 _ _ |a London
|b Taylor and Francis
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1500892480_6037
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a An improvement of power plant efficiency necessitates an increase of the process parameters and thus enables a reduction of consumed primary resources. Furthermore more efficient, sustainable, flexible and cost-effective energy technologies are strongly needed. For this reason the current research concentrates on a new concept of high-chromium fully ferritic stainless steels which are strengthened by a combination of solid-solution and intermetallic Laves phase particles. Such steels exhibit favourable creep, thermomechanical fatigue and steam oxidation behaviour up to 650°C. Based on detailed analysis by high-resolution scanning and transmission electron microscopy the particle size evolution and compositions were studied. Variations in chemical compositions were analysed experimentally and compared with thermodynamic equilibrium composition modelling results.
536 _ _ |0 G:(DE-HGF)POF3-111
|a 111 - Efficient and Flexible Power Plants (POF3-111)
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129810
|a Wessel, E.
|b 1
700 1 _ |0 P:(DE-Juel1)144064
|a Talík, M.
|b 2
700 1 _ |0 P:(DE-Juel1)159139
|a Lopez Barrilao, Jennifer
|b 3
|e Corresponding author
|u fzj
773 _ _ |0 PERI:(DE-600)2037367-3
|a 10.1080/02670836.2016.1244039
|g Vol. 33, no. 9, p. 1056 - 1064
|n 9
|p 1056 - 1064
|t Materials science and technology
|v 33
|x 1743-2847
|y 2017
909 C O |o oai:juser.fz-juelich.de:829926
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129742
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129810
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)159139
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-111
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b MATER SCI TECH-LOND : 2015
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21