001     829949
005     20220930130122.0
024 7 _ |a 10.1016/j.bpj.2017.03.007
|2 doi
024 7 _ |a 0006-3495
|2 ISSN
024 7 _ |a 1542-0086
|2 ISSN
024 7 _ |a WOS:000400505800010
|2 WOS
024 7 _ |a altmetric:19677191
|2 altmetric
024 7 _ |a pmid:28445753
|2 pmid
037 _ _ |a FZJ-2017-03553
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Dammers, Christina
|0 P:(DE-Juel1)145961
|b 0
|u fzj
245 _ _ |a Pyroglutamate-Modified Amyloid- β (3–42) Shows α -Helical Intermediates before Amyloid Formation
260 _ _ |a Cambridge, Mass.
|c 2017
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1496726534_28738
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pyroglutamate-modified amyloid-β (pEAβ) has been described as a relevant Aβ species in Alzheimer’s-disease-affected brains, with pEAβ (3–42) as a dominant isoform. Aβ (1–40) and Aβ (1–42) have been well characterized under various solution conditions, including aqueous solutions containing trifluoroethanol (TFE). To characterize structural properties of pEAβ (3–42) possibly underlying its drastically increased aggregation propensity compared to Aβ (1–42), we started our studies in various TFE-water mixtures and found striking differences between the two Aβ species. Soluble pEAβ (3–42) has an increased tendency to form β-sheet-rich structures compared to Aβ (1–42), as indicated by circular dichroism spectroscopy data. Kinetic assays monitored by thioflavin-T show drastically accelerated aggregation leading to large fibrils visualized by electron microscopy of pEAβ (3–42) in contrast to Aβ (1–42). NMR spectroscopy was performed for backbone and side-chain chemical-shift assignments of monomeric pEAβ (3–42) in 40% TFE solution. Although the difference between pEAβ (3–42) and Aβ (1–42) is purely N-terminal, it has a significant impact on the chemical environment of >20% of the total amino acid residues, as revealed by their NMR chemical-shift differences. Freshly dissolved pEAβ (3–42) contains two α-helical regions connected by a flexible linker, whereas the N-terminus remains unstructured. We found that these α-helices act as a transient intermediate to β-sheet and fibril formation of pEAβ (3–42).
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Reiss, Kerstin
|0 P:(DE-Juel1)161220
|b 1
700 1 _ |a Gremer, Lothar
|0 P:(DE-Juel1)145165
|b 2
|u fzj
700 1 _ |a Lecher, Justin
|0 P:(DE-Juel1)132010
|b 3
700 1 _ |a Ziehm, Tamar
|0 P:(DE-Juel1)162487
|b 4
|u fzj
700 1 _ |a Stoldt, Matthias
|0 P:(DE-Juel1)132023
|b 5
|u fzj
700 1 _ |a Schwarten, Melanie
|0 P:(DE-Juel1)132019
|b 6
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.bpj.2017.03.007
|g Vol. 112, no. 8, p. 1621 - 1633
|0 PERI:(DE-600)1477214-0
|n 8
|p 1621 - 1633
|t Biophysical journal
|v 112
|y 2017
|x 0006-3495
856 4 _ |u https://juser.fz-juelich.de/record/829949/files/PIIS0006349517302965.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829949/files/PIIS0006349517302965.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829949/files/PIIS0006349517302965.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829949/files/PIIS0006349517302965.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829949/files/PIIS0006349517302965.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829949/files/PIIS0006349517302965.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829949
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162487
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOPHYS J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21