000829956 001__ 829956
000829956 005__ 20210129230407.0
000829956 0247_ $$2doi$$a10.1088/1361-6528/aa5e59
000829956 0247_ $$2ISSN$$a0957-4484
000829956 0247_ $$2ISSN$$a1361-6528
000829956 0247_ $$2WOS$$aWOS:000395984300001
000829956 037__ $$aFZJ-2017-03560
000829956 082__ $$a530
000829956 1001_ $$0P:(DE-Juel1)162283$$aLübben, M.$$b0
000829956 245__ $$aSET kinetics of electrochemical metallization cells: influence of counter-electrodes in SiO $_{2}$ /Ag based systems
000829956 260__ $$aBristol$$bIOP Publ.$$c2017
000829956 3367_ $$2DRIVER$$aarticle
000829956 3367_ $$2DataCite$$aOutput Types/Journal article
000829956 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1494590530_30061
000829956 3367_ $$2BibTeX$$aARTICLE
000829956 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829956 3367_ $$00$$2EndNote$$aJournal Article
000829956 520__ $$aThe counter-electrode material in resistively switching electrochemical metallization cells (ECMs) is a crucial factor influencing the nucleation of conductive filaments, the equilibrium electrode potentials, and kinetics in the devices, and hence the overall switching characteristics. Here, we demonstrate the influence of the counter-electrode (CE) material on the SET events and the importance of appropriate choice and combination of materials. The counter-electrode material influences the counter-electrode processes at the CE/insulator interface and consequently determines the metal ion concentration in the cells. We measured the switching kinetics for SiO2/Ag based ECM cells using different counter-electrode materials with different electrocatalytic activities towards water reduction, namely platinum, ruthenium, and iridium oxide, as well as titanium nitride and tantalum. The experimental results are fitted using a physical simulation model and are analysed for the limiting factors for fast SET kinetics.
000829956 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000829956 588__ $$aDataset connected to CrossRef
000829956 7001_ $$0P:(DE-Juel1)158062$$aMenzel, S.$$b1$$ufzj
000829956 7001_ $$0P:(DE-HGF)0$$aPark, S. G.$$b2
000829956 7001_ $$0P:(DE-Juel1)131052$$aYang, M.$$b3
000829956 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b4$$ufzj
000829956 7001_ $$0P:(DE-Juel1)131014$$aValov, I.$$b5$$ufzj
000829956 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/1361-6528/aa5e59$$gVol. 28, no. 13, p. 135205 -$$n13$$p135205 -$$tNanotechnology$$v28$$x1361-6528$$y2017
000829956 8564_ $$uhttps://juser.fz-juelich.de/record/829956/files/L%C3%BCbben_2017_Nanotechnology_28_135205.pdf$$yRestricted
000829956 8564_ $$uhttps://juser.fz-juelich.de/record/829956/files/L%C3%BCbben_2017_Nanotechnology_28_135205.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829956 909CO $$ooai:juser.fz-juelich.de:829956$$pVDB
000829956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b1$$kFZJ
000829956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
000829956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b5$$kFZJ
000829956 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000829956 9141_ $$y2017
000829956 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829956 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000829956 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2015
000829956 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829956 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829956 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829956 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829956 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829956 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829956 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829956 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829956 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829956 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829956 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000829956 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829956 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000829956 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000829956 980__ $$ajournal
000829956 980__ $$aVDB
000829956 980__ $$aI:(DE-Juel1)PGI-7-20110106
000829956 980__ $$aI:(DE-82)080009_20140620
000829956 980__ $$aUNRESTRICTED