000829958 001__ 829958
000829958 005__ 20210406193210.0
000829958 0247_ $$2doi$$a10.1063/1.4977453
000829958 0247_ $$2ISSN$$a0021-9606
000829958 0247_ $$2ISSN$$a1089-7690
000829958 0247_ $$2WOS$$aWOS:000397312800060
000829958 0247_ $$2Handle$$a2128/18957
000829958 037__ $$aFZJ-2017-03562
000829958 082__ $$a540
000829958 1001_ $$00000-0003-1684-9693$$aSchie, Marcel$$b0
000829958 245__ $$aIon migration in crystalline and amorphous HfO$_{X}$
000829958 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2017
000829958 3367_ $$2DRIVER$$aarticle
000829958 3367_ $$2DataCite$$aOutput Types/Journal article
000829958 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617696477_23616
000829958 3367_ $$2BibTeX$$aARTICLE
000829958 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829958 3367_ $$00$$2EndNote$$aJournal Article
000829958 520__ $$aThe migration of ions in HfOx was investigated by means of large-scale, classical molecular-dynamics simulations over the temperature range 1000≤T/K≤2000. Amorphous HfOx was studied in both stoichiometric and oxygen-deficient forms (i.e., with x = 2 and x = 1.9875); oxygen-deficient cubic and monoclinic phases were also studied. The mean square displacement of oxygen ions was found to evolve linearly as a function of time for the crystalline phases, as expected, but displayed significant negative deviations from linear behavior for the amorphous phases, that is, the behavior was sub-diffusive. That oxygen-ion migration was observed for the stoichiometric amorphous phase argues strongly against applying the traditional model of vacancy-mediated migration in crystals to amorphous HfO2. In addition, cation migration, whilst not observed for the crystalline phases (as no cation defects were present), was observed for both amorphous phases. In order to obtain activation enthalpies of migration, the residence times of the migrating ions were analyzed. The analysis reveals four activation enthalpies for the two amorphous phases: 0.29 eV, 0.46 eV, and 0.66 eV (values very close to those obtained for the monoclinic structure) plus a higher enthalpy of at least 0.85 eV. In comparison, the cubic phase is characterized by a single value of 0.43 eV. Simple kinetic Monte Carlo simulations suggest that the sub-diffusive behavior arises from nanoscale confinement of the migrating ions.
000829958 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000829958 536__ $$0G:(DE-Juel1)jpgi70_20120501$$aModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM) (jpgi70_20120501)$$cjpgi70_20120501$$fModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM)$$x1
000829958 588__ $$aDataset connected to CrossRef
000829958 7001_ $$0P:(DE-HGF)0$$aMüller, Michael P.$$b1
000829958 7001_ $$0P:(DE-HGF)0$$aSalinga, Martin$$b2
000829958 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3
000829958 7001_ $$0P:(DE-HGF)0$$aDe Souza, Roger A.$$b4
000829958 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4977453$$gVol. 146, no. 9, p. 094508 -$$n9$$p094508 -$$tThe journal of chemical physics$$v146$$x1089-7690$$y2017
000829958 8564_ $$uhttps://juser.fz-juelich.de/record/829958/files/1.4977453.pdf$$yOpenAccess
000829958 8564_ $$uhttps://juser.fz-juelich.de/record/829958/files/1.4977453.gif?subformat=icon$$xicon$$yOpenAccess
000829958 8564_ $$uhttps://juser.fz-juelich.de/record/829958/files/1.4977453.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000829958 8564_ $$uhttps://juser.fz-juelich.de/record/829958/files/1.4977453.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000829958 909CO $$ooai:juser.fz-juelich.de:829958$$pdriver$$pdnbdelivery$$pVDB$$popen_access$$popenaire
000829958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
000829958 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000829958 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000829958 9141_ $$y2017
000829958 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829958 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829958 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2015
000829958 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829958 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829958 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829958 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829958 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829958 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829958 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829958 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829958 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829958 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829958 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829958 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000829958 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000829958 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000829958 980__ $$ajournal
000829958 980__ $$aVDB
000829958 980__ $$aI:(DE-Juel1)PGI-7-20110106
000829958 980__ $$aI:(DE-82)080009_20140620
000829958 980__ $$aI:(DE-82)080012_20140620
000829958 980__ $$aUNRESTRICTED
000829958 9801_ $$aFullTexts