000829958 001__ 829958 000829958 005__ 20210406193210.0 000829958 0247_ $$2doi$$a10.1063/1.4977453 000829958 0247_ $$2ISSN$$a0021-9606 000829958 0247_ $$2ISSN$$a1089-7690 000829958 0247_ $$2WOS$$aWOS:000397312800060 000829958 0247_ $$2Handle$$a2128/18957 000829958 037__ $$aFZJ-2017-03562 000829958 082__ $$a540 000829958 1001_ $$00000-0003-1684-9693$$aSchie, Marcel$$b0 000829958 245__ $$aIon migration in crystalline and amorphous HfO$_{X}$ 000829958 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2017 000829958 3367_ $$2DRIVER$$aarticle 000829958 3367_ $$2DataCite$$aOutput Types/Journal article 000829958 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617696477_23616 000829958 3367_ $$2BibTeX$$aARTICLE 000829958 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000829958 3367_ $$00$$2EndNote$$aJournal Article 000829958 520__ $$aThe migration of ions in HfOx was investigated by means of large-scale, classical molecular-dynamics simulations over the temperature range 1000≤T/K≤2000. Amorphous HfOx was studied in both stoichiometric and oxygen-deficient forms (i.e., with x = 2 and x = 1.9875); oxygen-deficient cubic and monoclinic phases were also studied. The mean square displacement of oxygen ions was found to evolve linearly as a function of time for the crystalline phases, as expected, but displayed significant negative deviations from linear behavior for the amorphous phases, that is, the behavior was sub-diffusive. That oxygen-ion migration was observed for the stoichiometric amorphous phase argues strongly against applying the traditional model of vacancy-mediated migration in crystals to amorphous HfO2. In addition, cation migration, whilst not observed for the crystalline phases (as no cation defects were present), was observed for both amorphous phases. In order to obtain activation enthalpies of migration, the residence times of the migrating ions were analyzed. The analysis reveals four activation enthalpies for the two amorphous phases: 0.29 eV, 0.46 eV, and 0.66 eV (values very close to those obtained for the monoclinic structure) plus a higher enthalpy of at least 0.85 eV. In comparison, the cubic phase is characterized by a single value of 0.43 eV. Simple kinetic Monte Carlo simulations suggest that the sub-diffusive behavior arises from nanoscale confinement of the migrating ions. 000829958 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000829958 536__ $$0G:(DE-Juel1)jpgi70_20120501$$aModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM) (jpgi70_20120501)$$cjpgi70_20120501$$fModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM)$$x1 000829958 588__ $$aDataset connected to CrossRef 000829958 7001_ $$0P:(DE-HGF)0$$aMüller, Michael P.$$b1 000829958 7001_ $$0P:(DE-HGF)0$$aSalinga, Martin$$b2 000829958 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3 000829958 7001_ $$0P:(DE-HGF)0$$aDe Souza, Roger A.$$b4 000829958 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4977453$$gVol. 146, no. 9, p. 094508 -$$n9$$p094508 -$$tThe journal of chemical physics$$v146$$x1089-7690$$y2017 000829958 8564_ $$uhttps://juser.fz-juelich.de/record/829958/files/1.4977453.pdf$$yOpenAccess 000829958 8564_ $$uhttps://juser.fz-juelich.de/record/829958/files/1.4977453.gif?subformat=icon$$xicon$$yOpenAccess 000829958 8564_ $$uhttps://juser.fz-juelich.de/record/829958/files/1.4977453.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000829958 8564_ $$uhttps://juser.fz-juelich.de/record/829958/files/1.4977453.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000829958 909CO $$ooai:juser.fz-juelich.de:829958$$pdriver$$pdnbdelivery$$pVDB$$popen_access$$popenaire 000829958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ 000829958 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000829958 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000829958 9141_ $$y2017 000829958 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000829958 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000829958 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2015 000829958 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000829958 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000829958 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000829958 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000829958 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000829958 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000829958 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000829958 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000829958 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000829958 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000829958 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000829958 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0 000829958 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000829958 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2 000829958 980__ $$ajournal 000829958 980__ $$aVDB 000829958 980__ $$aI:(DE-Juel1)PGI-7-20110106 000829958 980__ $$aI:(DE-82)080009_20140620 000829958 980__ $$aI:(DE-82)080012_20140620 000829958 980__ $$aUNRESTRICTED 000829958 9801_ $$aFullTexts