000829960 001__ 829960
000829960 005__ 20210129230408.0
000829960 0247_ $$2doi$$a10.1016/j.electacta.2016.10.188
000829960 0247_ $$2ISSN$$a0013-4686
000829960 0247_ $$2ISSN$$a1873-3859
000829960 0247_ $$2WOS$$aWOS:000392566200042
000829960 0247_ $$2Handle$$a2128/25145
000829960 037__ $$aFZJ-2017-03564
000829960 082__ $$a540
000829960 1001_ $$0P:(DE-HGF)0$$aHan, Ji-Hyung$$b0
000829960 245__ $$aResistive Switching in Aqueous Nanopores by Shock Electrodeposition
000829960 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016
000829960 3367_ $$2DRIVER$$aarticle
000829960 3367_ $$2DataCite$$aOutput Types/Journal article
000829960 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1494591830_30059
000829960 3367_ $$2BibTeX$$aARTICLE
000829960 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829960 3367_ $$00$$2EndNote$$aJournal Article
000829960 520__ $$aSolid-state programmable metallization cells have attracted considerable attention as memristive elements for Redox-based Resistive Random Access Memory (ReRAM) for low-power and low-voltage applications. In principle, liquid-state metallization cells could offer the same advantages for aqueous systems, such as biomedical lab-on-a-chip devices, but robust resistive switching has not yet been achieved in liquid electrolytes, where electrodeposition is notoriously unstable to the formation of fractal dendrites. Here, the recently discovered physics of shock electrodeposition are harnessed to stabilize aqueous copper growth in polycarbonate nanopores, whose surfaces are modified with charged polymers. Stable bipolar resistive switching is demonstrated for 500 cycles with <10 s retention times, prior to any optimization of the geometry or materials.
000829960 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000829960 588__ $$aDataset connected to CrossRef
000829960 7001_ $$0P:(DE-HGF)0$$aMuralidhar, Ramachandran$$b1
000829960 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b2
000829960 7001_ $$0P:(DE-HGF)0$$aBazant, Martin Z.$$b3$$eCorresponding author
000829960 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2016.10.188$$gVol. 222, p. 370 - 375$$p370 - 375$$tElectrochimica acta$$v222$$x0013-4686$$y2016
000829960 8564_ $$uhttps://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.pdf$$yRestricted
000829960 8564_ $$uhttps://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.gif?subformat=icon$$xicon$$yRestricted
000829960 8564_ $$uhttps://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829960 8564_ $$uhttps://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829960 8564_ $$uhttps://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829960 8564_ $$uhttps://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829960 8564_ $$uhttps://juser.fz-juelich.de/record/829960/files/S0013468616323052.pdf$$yOpenAccess
000829960 8564_ $$uhttps://juser.fz-juelich.de/record/829960/files/S0013468616323052.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000829960 909CO $$ooai:juser.fz-juelich.de:829960$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000829960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b2$$kFZJ
000829960 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000829960 9141_ $$y2017
000829960 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829960 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829960 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2015
000829960 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829960 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829960 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829960 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829960 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000829960 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829960 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829960 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829960 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829960 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829960 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829960 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000829960 980__ $$ajournal
000829960 980__ $$aVDB
000829960 980__ $$aUNRESTRICTED
000829960 980__ $$aI:(DE-Juel1)PGI-7-20110106
000829960 9801_ $$aFullTexts