001     829960
005     20210129230408.0
024 7 _ |a 10.1016/j.electacta.2016.10.188
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a WOS:000392566200042
|2 WOS
024 7 _ |a 2128/25145
|2 Handle
037 _ _ |a FZJ-2017-03564
082 _ _ |a 540
100 1 _ |a Han, Ji-Hyung
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Resistive Switching in Aqueous Nanopores by Shock Electrodeposition
260 _ _ |a New York, NY [u.a.]
|c 2016
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1494591830_30059
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid-state programmable metallization cells have attracted considerable attention as memristive elements for Redox-based Resistive Random Access Memory (ReRAM) for low-power and low-voltage applications. In principle, liquid-state metallization cells could offer the same advantages for aqueous systems, such as biomedical lab-on-a-chip devices, but robust resistive switching has not yet been achieved in liquid electrolytes, where electrodeposition is notoriously unstable to the formation of fractal dendrites. Here, the recently discovered physics of shock electrodeposition are harnessed to stabilize aqueous copper growth in polycarbonate nanopores, whose surfaces are modified with charged polymers. Stable bipolar resistive switching is demonstrated for 500 cycles with <10 s retention times, prior to any optimization of the geometry or materials.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Muralidhar, Ramachandran
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 2
700 1 _ |a Bazant, Martin Z.
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1016/j.electacta.2016.10.188
|g Vol. 222, p. 370 - 375
|0 PERI:(DE-600)1483548-4
|p 370 - 375
|t Electrochimica acta
|v 222
|y 2016
|x 0013-4686
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.pdf
856 4 _ |y Restricted
|x icon
|u https://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.gif?subformat=icon
856 4 _ |y Restricted
|x icon-1440
|u https://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.jpg?subformat=icon-1440
856 4 _ |y Restricted
|x icon-180
|u https://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.jpg?subformat=icon-180
856 4 _ |y Restricted
|x icon-640
|u https://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.jpg?subformat=icon-640
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/829960/files/1-s2.0-S0013468616323052-main.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/829960/files/S0013468616323052.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/829960/files/S0013468616323052.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:829960
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21