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Abstract: Solid-state programmable metallization cells have attracted considerable attention
as memristive elements for Redox-based Resistive Random Access Memory (ReRAM) for
low-power and low-voltage applications. In principle, liquid-state metallization cells could
offer the same advantages for aqueous systems, such as biomedical lab-on-a-chip devices, but
robust resistive switching has not yet been achieved in liquid electrolytes, where
electrodeposition is notoriously unstable to the formation of fractal dendrites. Here, the
recently discovered physics of shock electrodeposition are harnessed to stabilize aqueous
copper growth in polycarbonate nanopores, whose surfaces are modified with charged
polymers. Stable bipolar resistive switching is demonstrated for 500 cycles with <10s

retention times, prior to any optimization of the geometry or materials.
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1. Introduction

In recent years, memristive elements[1] based on internal redox-reactions have
attracted intense interest for applications such as non-volatile Random Access Memory[2-4].
Resistive switching in solid-state ultra-thin films is widely viewed as a potential replacement
for flash memory in devices requiring lower power, lower voltage, and higher programming
speed. A popular class of these Redox-based Resistive Random Access Memories (ReRAM)
is based on the reversible dielectric breakdown of transition metal oxide (TMO) films, in
which oxygen vacancies (or transition metal interstitials) are moved and the valence change
of the metal cations leads to the formation of conducting filaments[4,5]. This class is called
Valence Change Memories (VCM), also known as OXRRAM. Another important class
relies on an electrochemically active electrode material such as Ag or Cu and ultra-thin solid
electrolyte or insulator films. This class is called electrochemical metallization memories
(ECM), also known as conductive-bridge memories (CBRAM) or programmable
metallization cells (PMCs) [2,3]. In these systems, cation redox reactions lead to the growth
and dissolution of nanoscale metal dendrites that reversibly short-circuit the electrodes to

create two memory states with very different resistances[2,3].

In contrast to solid-state devices, resistive switching in liquids has received much
less attention, in spite of its potential to open new and different applications, e.g. for control,
logic, or memory in microfluidic devices. Indeed, liquid-state ECM would appear to be
impossible because rapid electrodeposition in bulk liquids becomes unstable to the growth of
fragile, fractal deposits, which cannot be grown and dissolved reversibly[6-8]. To our
knowledge, the only previous attempt at resistive switching in an aqueous system involved

adding a drop of water in a gap between microelectrodes to induce the local formation and
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dissolution of Ag dendrites[9], albeit without demonstrating the long-term stability of

ON/OFF cycles.

In this paper, we report stable, reversible resistive switching in an aqueous system.
The required control of metal electrodeposition[10,11] is achieved by exploiting the new
physics of over-limiting current (faster than diffusion)[10,12-14] and deionization shock
waves in charged nanochannels[10,15-18] and porous media[11,14,16,19-21]. In bulk liquid
electrolytes, the morphological instability leading to dendritic growth results from diffusion
limitation[22], but when the electrolyte is confined within negatively charged nanopores,
surface transport of cations through the electric double layers can sustain over-limiting
current and lead to the formation of stable deionization shock waves (jumps in ion
concentrations and the electric field) that propagate against the applied current[12,18,20,21].
Deionization shocks have the general structure of a *diffusive wave”, similar to the diffusion
layer that precedes dendritic electrodeposition[22-24], but followed instead by a region of
strong salt depletion in the nanopores, where large electric fields drive surface conduction
and stabilize uniform metal growth[11,16]. In ordered nanopores with unmodified surfaces,
metal nanowire growth is difficult to synchronize[25], but our group has showed that shock
electrodeposition with charge-modified surfaces offers a powerful new means of controlling
rapid metal growth, in both ordered[10] and disordered[11] nanopores. Interestingly, the field
of solid-state ReRAM has just come to a similar realization[26], that ionic shock waves (in
oxygen vacancies) also control the switching dynamics of memristive elements based on

TMO thin films.
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2. Theory

The mathematical structure of models in both fields is that of a nonlinear drift-
diffusion equation for explaining the fundamental connection between liquid-state and solid-
state ion-concentration shock waves and their analogous applications in resistive switching
devices.

ac dc d%c
aﬂ‘V(C)a—Dﬁ 1)

In simple models of solid-state ReRAM, the local resistivity along a conducting path is

proportional the oxygen vacancy concentration (7 ~¢), and thus so are the local electric
field (£ = rI) and vacancy drift velocity (v = 77&) at constant applied current (/). In that
case (v(c)~c), the Nernst-Planck equation (1) reduces to Burgers equation, the simplest

model of shock propagation by forward wave breaking (vw¢>0), which captures the essential
nonlinearities of gas dynamics, water waves, and glaciers[27].  Physically, oxygen
vacancies experience larger electric fields and drift faster in regions of higher concentration,
so the crest of a concentration wave will overtake the trough until a steep gradient is

stabilized by diffusion and propagates as a “shock” in the direction of the current.

In neutral binary electrolytes, concentration relaxation occurs by ambipolar diffusion
without drift, but in charged electrolytes confined to micro/nanochannels[11,15,28] or “leaky
membranes”[16,20,29], the oppositely charged internal surfaces act as dopants in

semiconductors or transition metal sites in TMOs, leading to nonlinear drift by
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electromigration and electro-osmotic flow. The relative importance of surface-driven drift
compared to bulk ambipolar diffusion grows as the electric field is amplified by decreasing

salt concentration and enables over-limiting current, faster than diffusion[11,12,14].  For
negatively charged surfaces, the effective drift velocity scales as v(c)~ - rSI/(c- rs),
where r_ <0 is the surface charge per volume, since excess cations in the double layers of

concentration - s drift in the local electric field (£ = r1I), which scales with the total

resistivity (7 ~(c- rs)’l)[16,20]. In this case, as in traffic flow[30], concentration waves
break backwards, since crests move slower than troughs (vw¢<0Q). Physically, regions of
salt depletion have greater resistivity and amplified electric fields, which drive further
depletion by electromigration through the double layers. Electro-osmotic flows further
enhance salt depletion via electro-hydrodynamic dispersion, which has thus far resisted a

simple description by homogenized equations such as Eq. (1) [12-14,18,28,29].

Shock electrodeposition occurs when electrodeposition is preceded and regulated by
a deionization shock wave. Since modeling is quite challenging with diffuse charge,
electro-convection and moving boundaries, shock electrodeposition has only been studied
experimentally to date[10,11]. In anodic aluminum oxide (AAO) with parallel 300nm pores
and negatively charged surface coatings, shock electrodeposits grow uniformly along the
surfaces at high currents, fed by surface conduction of cations through thin double layers[10].
In membrane materials with smaller, randomly intersecting pores, such as cellulose nitrate
(200-300nm) and polyethylene (50nm), shock electrodeposition leads to macroscopically flat

deposits, which can be reversibly cycled through the material[11].
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Fig. 1. Cross-sectional sketch of deionization shocks forming ahead of metal
electrodeposition by surface conduction in charged nanopores at high rates, as demonstrated
in Ref. [10] for 300nm AAO nanopores with thin double layers and applied here to resistive
switching in smaller 50nm PC nanopores with thick double layers in the ion depletion zone.
This schematic depicts only one nanopore in the PC membrane.

The observed stability of electrodeposition/dissolution cycles in these cases may be
attributable to double layer overlap in the depleted region behind the shock wave, which
leads to more uniform excess conductivity and thus more stable shock propagation, according
to theory[16]. In order to observe deionization shocks, however, the surface charge must be
small compared to the initial bulk salt concentration[20], corresponding to thin double layers.
Therefore, we predict that the ideal nanopore radius for programmable metallization by shock
electrodeposition should lie in between the Debye screening lengths of the concentrated and
depleted solutions, e.g. 10-300nm for 1mM-1uM, so that the double layers are thin ahead of

the shock and thick behind it, as sketched in Fig. 1.

3. Experimental

Our prototype for aqueous resistive switching utilizes polycarbonate (PC)
membranes with ordered nano-sized cylindrical parallel pores (50 nm in diameter, 6 um in
length) whose surface charge is modified by layer-by-layer deposition of polyelectrolyte
layers of alternating charge. Polydiallyldimethylammonium chloride (\DADMAC) is directly
deposited on a bare PC membrane to make PC(+) with positive surface charge. A negatively
charged PC(-) membrane is then obtained by coating negative polyelectrolytes

(poly(styrenesulfonate), pSS) on the pDADMAC-coated PC(+) membrane. The PC
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membranes are soaked in 1 mM CuSO, solution, and an ECM cell is constructed, as in our
previous experiments[10]. Briefly, the PC membrane is clamped between Cu disk electrode
(13 mm diameter) and Au coated Si wafer (1 cm x 1.5 cm) under constant pressure. The cell
voltage is reported as the potential the Au coated Si wafer working electrode, relative to that
of the Cu counter-electrode. At potentials near Cu deposition/dissolution (E°=0.16V), the Au
substrate of the working electrode is electrochemical inert (E°=1.50V). In order to prevent
the evaporation of the electrolyte solution inside PC membrane, the electrochemical cell is
immersed in a beaker containing distilled water (the “outer solution”). When 1 mM CuSQy is
used as an outer solution, the net Cu** ion flux into nanopores (balanced by dissolution at
other locations of copper electrodes) can cause some pores to be permanently filled with Cu
metal during resistive switching test. The use of distilled water as the outer solution allows us
to achieve reversible switching characteristics over large numbers of ON/OFF cycles. It
should be noted that there is some leakage of Cu®* ions flowing out of the nanopores because
the PC membrane is not perfectly sealed against electrodes, especially at the metal surfaces
evolve during electrodeposition/dissolution cycles. As small gaps appear between the PC
membrane and the electrodes, it is expected that the concentration of the CuSO,; “inner
solution” within the nanopores undergoing reversible metallization will gradually decrease

over time during cycling experiments.

4. Results and discussion

The current-voltage curves (Fig. 2a) show the expected dependence on the surface

charge of the porous medium during over-limiting current with metal
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electrodeposition[10,11]. The PC(-) exhibits a gradual increase in current and very sharp
current jump at around -0.65 V, while current of PC(+) is relatively low and constant without
current jump. The effect of surface conduction on metal electrodeposition rate is illustrated in
Fig. 1b. Surface conduction of cations in PC(-) provides a path for fast ion transport by
electromigration (and to a lesser extent, electro-osmotic flow), driven by the large electric
field in the ion depletion region, leading to short circuit current by the metallic contact of
copper deposits with the opposite copper electrode. Since the depleted region behind the
shock can reach micro-molar concentrations[14,21] with ~300nm Debye length, the double
layers will strongly overlap, which should improve the stability of resistive switching by

stabilizing the shock profile ahead of the growth, as noted above.

Fig. 2. (a) Linear sweep voltammetry (LSV) of PC(+) and PC(-) membranes of exposed area
1 cm?® between Cu disk electrode and Au wafer electrode in 1 mM CuSOy at 2 mV/s. The
outer solution is water. The potential of the Au/Si working electrode is measured relative to
the Cu counter-electrode, so that Cu electrodeposition on the working electrode (negative
reduction current) occurs at negative voltages. (b) SEM image of a transverse cross section of
a PC membrane, showing randomly dispersed, non-intersecting pores of 50nm mean diameter.

The morphologies of electrodeposits forming the short circuits were not
characterized in this study, since it is difficult to isolate the relatively small number of
nanopores filled with copper, but based on our previous imaging experiments on copper
electrodeposits in anodized aluminum oxide (AAO) membranes with similar surface charge
modifications[10], it is likely that the short circuit structures consist of mostly space-filling
copper nanorods, as well as some copper nanotubes coating the surfaces, depending on the
variable local current density within each nanopore[25]. On the other hand, positive surface

charge suppresses metal growth as a result of oppositely-directed surface conduction, and the
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copper deposits grown in PC(+) are typically very short and never approach the Cu counter-

electrode, as in our previous work[10].

Fig. 3. LSV of PC(+) and PC(-) membranes of exposed area 1 cm? between Cu disk electrode
and Au wafer electrode in distilled water at 2 mV/s. The outer solution is also distilled water.

The current-voltage relations for PC(+) and PC(-) were also examined with distilled
water as the inner solution (Fig. 3). The current of PC(-) is much higher than that of PC(+),
which provides evidence that growth of copper nanowires is driven by surface conduction of
Cu?* ions originating from dissolution of the Cu anode. PC(-) showed an increase in current
driven by surface conduction regardless of the type of inner solution. The difference is that
PC(-) showed a short circuit with 1 mM CuSOj, as the inner solution, while, in distilled water,
PC(-) showed only gradual increase in current without a short circuit. This indicates that the
very low concentration of Cu®* ions resulting from dissolution of the Cu anode is not
sufficient to grow copper nanowires all the way to a short circuit when distilled water is used

as inner solution.

Fig. 4. Resistive switching of by copper electrodeposition (brown) in the PC(-) membrane in
1 mM CuSO4 at 1 mV/s with sketches of the stages of metallization within the charged
nanopores.

After getting the first short circuit of PC(-) membrane from the LSV (Fig. 2a), an
oxidation potential (0.8 V) is applied at the Au electrode to detach Cu nanowires from the Cu

electrode until the current is decreased to less than 0.05 mA. Repeated cycles of resistive
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switching are then measured using cyclic voltammetry (Fig. 4). Some Cu nanowires start to
grow through the nanopores during overlimiting current when negative potential is applied at
Au electrode, followed by abrupt increase in current of approximately two orders of
magnitude around -0.12 V, which implies that several Cu nanowires are in contact with Cu
electrode to create a short circuit (ON state). The high conductivity of ON state begins to
decline rapidly at 0.1 V, and the Cu filaments are detached from the Cu electrode around 0.2
V by substantial dissolution, which leads to OFF state. Further application of the oxidation
potential dissolves some Cu dendrites grown at the Au electrode. The onset potential where
short circuit occurs the first time (Fig. 2a) is different from the corresponding onset potentials
in subsequent ON/OFF cycles (Fig. 4) because the bare Au metal substrate where Cu
nanowires first start to grow is different from the surface covered with Cu residues in later
cycles, which likely remain on the Au electrode after the OFF state. Indeed, it is well
known that the overpotential for Cu electrodeposition on the same metal surface is much less

than on a foreign substrate[31].

Fig. 5. Resistive switching of copper in the AAO(-) membrane of exposed area 1 cm?
between Cu disk electrode and Au wafer electrode in 10 mM CuSO4 at 1 mV/s. The outer
solution is water.

In order to test the effect of nanopore radius, we also studied resistive switching
AAO(-) membranes with 300nm pores from our previous work[10], whose diameter is
comparable to the Debye length in deionized water. In order to further reduce double layer
overlap, we also used a larger initial salt concentration of 10 mM, which increases the

depleted concentration at the same current[14,21]. Under these conditions, similar behavior

of resistive switching was observed in AAO(-) as in PC(-), but the cycling capability is
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significantly degraded, consistent with the theoretical arguments above (Fig. 5). The onset
potential where short circuit occurs is around -0.1 V, which is almost the same with the PC
membrane, but the current under the positive voltage before reaching the OFF state is quite
different. The sharp decrease of high conductivity stops around 0.11 V, and then the current
gradually declines, which suggests that the Cu nanowires in ON state do not detach from the

Cu electrode at the same time.

Fig. 6. (a) Cycling test at negative pulses (ON state) of -0.1 V for 20 s followed by positive
pulses (OFF state) of 0.4 V for 30 s. (b) Long-term ON/OFF cycling over 7 hours. Copper is
electrodeposited and electrostripped in PC(-) in an inner solution of < 1 mM CuSQO, and
distilled water as the outer solution.

Cycling tests were performed with the most stable PC(-) membrane by applying
repeated pulses of negative and positive voltages (Fig. 6). The ON state current of - 0.1 mA
was found to be very reproducible and stable (Fig. 6a). A consistent retention time on the
order of seconds (~7 s) is required to reach the OFF state after applying positive voltage.
Long-term cycling between ON/OFF states for over 7 hours shows fairly good stability and
reproducibility under the same experimental conditions (Fig. 6b). Although the ON state
current is gradually decreasing, the OFF state current remains almost constant, and robust
resistive switching is observed throughout the experiments. Even after 500 cycles, the current
still reliably jumps by two orders of magnitude between the ON and OFF states with a

consistent response time < 10 s.

The slowly decaying ON state current may be attributable to the gradual exchange of
ions between the inner and outer solutions, which could be controlled in future designs in

order to extend the cycle life. We have already noted that a more concentrated outer
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solution tends to cause excess metallization as additional cations diffuse into the PC(-)
nanopores, which leads to larger ON currents but also difficulty switching back to the OFF
state,. In the present prototype with distilled water as the outer solution, cations slowly leak
out from the nanopores, and the initial concentration of the inner solution (1 mM) becomes
significantly reduced. As a result, the number of Cu nanowires in metallic contact with the
Cu disk electrode in the ON state is decreased, leading to higher resistance and lower current.
Nevertheless, we can still easily tell the difference between ON and OFF state currents after
500 cycles over 7 hours. The stability and reliability of ON/OFF switching could be
improved by better sealing the negatively charged nanopores against the electrodes,
surrounding them with positively charged polymer layers, adjusting the concentration of the

outer solution, or other methods of controlling to cation exchange with the inner solution.

5. Conclusions

Robust resistive switching in an aqueous porous medium by copper metalization in
negatively charged nanopores was demonstrated. The ECM-type switching process exploits
the stability and control of metal electrodeposition afforded by deionization shock waves,
which form during the passage of over-limiting current by electromigration through the
electric double layers of the nanopores. After some optimization of the geometry,
materials and protocols, it should be possible to develop individually accessible nanopores
for agueous ReRAM with subsecond response times, lasting for thousands of ON/OFF cycles.
Applications of aqueous resistive switching include control in lab-on-a-chip devices for

micro-total analysis of chemical samples, biomedical diaognostics or drug delivery, and
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related logic and memory.
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Graphical Abstract

Robust resistive switching by copper electrodeposition in an aqueous porous medium was achieved from
deionization shock waves generating during the passage of over-limiting current by electromigration through the
electric double layers of negatively charged nanopores.

Shock electrodeposition in negatively charged nanopores
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