000830012 001__ 830012
000830012 005__ 20210129230415.0
000830012 0247_ $$2doi$$a10.1007/s11119-017-9504-y
000830012 0247_ $$2WOS$$aWOS:000419944500008
000830012 037__ $$aFZJ-2017-03614
000830012 041__ $$aEnglish
000830012 082__ $$a630
000830012 1001_ $$0P:(DE-Juel1)145906$$aBurkart, Andreas$$b0$$eCorresponding author
000830012 245__ $$aPhenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution
000830012 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2018
000830012 3367_ $$2DRIVER$$aarticle
000830012 3367_ $$2DataCite$$aOutput Types/Journal article
000830012 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536586331_12669
000830012 3367_ $$2BibTeX$$aARTICLE
000830012 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000830012 3367_ $$00$$2EndNote$$aJournal Article
000830012 520__ $$aEmerging strategies and technologies in agriculture, such as precision farming and phenotyping depend on detailed data on all stages of crop development. Unmanned aerial vehicles promise to deliver such time series as they allow very frequent measurements. In this study, we analyse a field trial with two barley cultivars and two contrasting sowing densities in a random plot design over 2 consecutive years using the aerial images of 28 flight campaigns, providing a very high temporal resolution. From empirically corrected RGB images, we calculated the green-red-vegetation-index (GRVI) and evaluated the time-series for its potential to track the seasonal development of the crop. The time series shows a distinct pattern during crop development that reflected the different developmental stages from germination to harvest. The simultaneous comparison to ground based assessment of phenological stages, allowed us to relate features of the airborne time series to actual events in plant growth and development. The measured GRVI values range from −0.10 (bare soil) to 0.20 (fully developed crop) and show a clear drop at time of ear pushing and ripening. Lower sowing densities were identified by smaller GRVI values during the vegetative growth phase. Additionally, we could show that the time of corn filling was strongly fixed and happened around 62 days after seeding in both years and under both density treatments. This case study provides a proof-of-concept evaluation how RGB data can be utilized to provide quantitative data in crop management and precision agriculture.
000830012 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000830012 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000830012 7001_ $$0P:(DE-Juel1)174492$$aHecht, Vera Lisa$$b1$$ufzj
000830012 7001_ $$0P:(DE-HGF)0$$aKraska, T.$$b2
000830012 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b3
000830012 773__ $$0PERI:(DE-600)2016333-2$$a10.1007/s11119-017-9504-y$$n1$$p134–146$$tPrecision agriculture$$v19$$x1385-2256$$y2018
000830012 8564_ $$uhttps://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.pdf$$yRestricted
000830012 8564_ $$uhttps://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.gif?subformat=icon$$xicon$$yRestricted
000830012 8564_ $$uhttps://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000830012 8564_ $$uhttps://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.jpg?subformat=icon-180$$xicon-180$$yRestricted
000830012 8564_ $$uhttps://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.jpg?subformat=icon-640$$xicon-640$$yRestricted
000830012 8564_ $$uhttps://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.pdf?subformat=pdfa$$xpdfa$$yRestricted
000830012 909CO $$ooai:juser.fz-juelich.de:830012$$pVDB
000830012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145906$$aForschungszentrum Jülich$$b0$$kFZJ
000830012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174492$$aForschungszentrum Jülich$$b1$$kFZJ
000830012 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b3$$kFZJ
000830012 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000830012 9141_ $$y2017
000830012 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000830012 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830012 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPRECIS AGRIC : 2015
000830012 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000830012 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000830012 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000830012 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000830012 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000830012 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000830012 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000830012 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000830012 920__ $$lyes
000830012 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000830012 980__ $$ajournal
000830012 980__ $$aVDB
000830012 980__ $$aI:(DE-Juel1)IBG-2-20101118
000830012 980__ $$aUNRESTRICTED