001     830012
005     20210129230415.0
024 7 _ |a 10.1007/s11119-017-9504-y
|2 doi
024 7 _ |a WOS:000419944500008
|2 WOS
037 _ _ |a FZJ-2017-03614
041 _ _ |a English
082 _ _ |a 630
100 1 _ |a Burkart, Andreas
|0 P:(DE-Juel1)145906
|b 0
|e Corresponding author
245 _ _ |a Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution
260 _ _ |a Dordrecht [u.a.]
|c 2018
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1536586331_12669
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Emerging strategies and technologies in agriculture, such as precision farming and phenotyping depend on detailed data on all stages of crop development. Unmanned aerial vehicles promise to deliver such time series as they allow very frequent measurements. In this study, we analyse a field trial with two barley cultivars and two contrasting sowing densities in a random plot design over 2 consecutive years using the aerial images of 28 flight campaigns, providing a very high temporal resolution. From empirically corrected RGB images, we calculated the green-red-vegetation-index (GRVI) and evaluated the time-series for its potential to track the seasonal development of the crop. The time series shows a distinct pattern during crop development that reflected the different developmental stages from germination to harvest. The simultaneous comparison to ground based assessment of phenological stages, allowed us to relate features of the airborne time series to actual events in plant growth and development. The measured GRVI values range from −0.10 (bare soil) to 0.20 (fully developed crop) and show a clear drop at time of ear pushing and ripening. Lower sowing densities were identified by smaller GRVI values during the vegetative growth phase. Additionally, we could show that the time of corn filling was strongly fixed and happened around 62 days after seeding in both years and under both density treatments. This case study provides a proof-of-concept evaluation how RGB data can be utilized to provide quantitative data in crop management and precision agriculture.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
700 1 _ |a Hecht, Vera Lisa
|0 P:(DE-Juel1)174492
|b 1
|u fzj
700 1 _ |a Kraska, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 3
773 _ _ |a 10.1007/s11119-017-9504-y
|0 PERI:(DE-600)2016333-2
|n 1
|p 134–146
|t Precision agriculture
|v 19
|y 2018
|x 1385-2256
856 4 _ |u https://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830012/files/s11119-017-9504-y.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:830012
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145906
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174492
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PRECIS AGRIC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21