000830013 001__ 830013
000830013 005__ 20210129230415.0
000830013 0247_ $$2doi$$a10.1016/j.jenvman.2016.08.069
000830013 0247_ $$2ISSN$$a0301-4797
000830013 0247_ $$2ISSN$$a1095-8630
000830013 0247_ $$2WOS$$aWOS:000409294000003
000830013 037__ $$aFZJ-2017-03615
000830013 041__ $$aEnglish
000830013 082__ $$a333.7
000830013 1001_ $$0P:(DE-HGF)0$$aHortobágyi, Borbála$$b0$$eCorresponding author
000830013 245__ $$aA multi-scale approach of fluvial biogeomorphic dynamics using photogrammetry
000830013 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000830013 3367_ $$2DRIVER$$aarticle
000830013 3367_ $$2DataCite$$aOutput Types/Journal article
000830013 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502693723_6475
000830013 3367_ $$2BibTeX$$aARTICLE
000830013 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000830013 3367_ $$00$$2EndNote$$aJournal Article
000830013 520__ $$aOver the last twenty years, significant technical advances turned photogrammetry into a relevant tool for the integrated analysis of biogeomorphic cross-scale interactions within vegetated fluvial corridors, which will largely contribute to the development and improvement of self-sustainable river restoration efforts. Here, we propose a cost-effective, easily reproducible approach based on stereophotogrammetry and Structure from Motion (SfM) technique to study feedbacks between fluvial geomorphology and riparian vegetation at different nested spatiotemporal scales. We combined different photogrammetric methods and thus were able to investigate biogeomorphic feedbacks at all three spatial scales (i.e., corridor, alluvial bar and micro-site) and at three different temporal scales, i.e., present, recent past and long term evolution on a diversified riparian landscape mosaic. We evaluate the performance and the limits of photogrammetric methods by targeting a set of fundamental parameters necessary to study biogeomorphic feedbacks at each of the three nested spatial scales and, when possible, propose appropriate solutions. The RMSE varies between 0.01 and 2 m depending on spatial scale and photogrammetric methods. Despite some remaining difficulties to properly apply them with current technologies under all circumstances in fluvial biogeomorphic studies, e.g. the detection of vegetation density or landform topography under a dense vegetation canopy, we suggest that photogrammetry is a promising instrument for the quantification of biogeomorphic feedbacks at nested spatial scales within river systems and for developing appropriate river management tools and strategies.
000830013 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000830013 588__ $$aDataset connected to CrossRef
000830013 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000830013 7001_ $$0P:(DE-HGF)0$$aCorenblit, Dov$$b1
000830013 7001_ $$0P:(DE-HGF)0$$aVautier, Franck$$b2
000830013 7001_ $$0P:(DE-HGF)0$$aSteiger, Johannes$$b3
000830013 7001_ $$0P:(DE-HGF)0$$aRoussel, Erwan$$b4
000830013 7001_ $$0P:(DE-Juel1)145906$$aBurkart, Andreas$$b5
000830013 7001_ $$0P:(DE-HGF)0$$aPeiry, Jean-Luc$$b6
000830013 773__ $$0PERI:(DE-600)1469206-5$$a10.1016/j.jenvman.2016.08.069$$gp. S0301479716306314$$nPart 2$$p348-362$$tJournal of environmental management$$v202$$x0301-4797$$y2017
000830013 8564_ $$uhttps://juser.fz-juelich.de/record/830013/files/1-s2.0-S0301479716306314-main.pdf$$yRestricted
000830013 8564_ $$uhttps://juser.fz-juelich.de/record/830013/files/1-s2.0-S0301479716306314-main.gif?subformat=icon$$xicon$$yRestricted
000830013 8564_ $$uhttps://juser.fz-juelich.de/record/830013/files/1-s2.0-S0301479716306314-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000830013 8564_ $$uhttps://juser.fz-juelich.de/record/830013/files/1-s2.0-S0301479716306314-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000830013 8564_ $$uhttps://juser.fz-juelich.de/record/830013/files/1-s2.0-S0301479716306314-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000830013 8564_ $$uhttps://juser.fz-juelich.de/record/830013/files/1-s2.0-S0301479716306314-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000830013 909CO $$ooai:juser.fz-juelich.de:830013$$pVDB
000830013 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145906$$aForschungszentrum Jülich$$b5$$kFZJ
000830013 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000830013 9141_ $$y2017
000830013 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000830013 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830013 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000830013 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000830013 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ENVIRON MANAGE : 2015
000830013 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000830013 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000830013 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000830013 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000830013 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000830013 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000830013 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000830013 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000830013 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000830013 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000830013 920__ $$lyes
000830013 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000830013 980__ $$ajournal
000830013 980__ $$aVDB
000830013 980__ $$aI:(DE-Juel1)IBG-2-20101118
000830013 980__ $$aUNRESTRICTED