000830016 001__ 830016
000830016 005__ 20210129230416.0
000830016 0247_ $$2doi$$a10.1186/s12864-016-3022-6
000830016 0247_ $$2Handle$$a2128/14526
000830016 0247_ $$2WOS$$aWOS:000384980300004
000830016 0247_ $$2altmetric$$aaltmetric:10866959
000830016 0247_ $$2pmid$$apmid:27565139
000830016 037__ $$aFZJ-2017-03618
000830016 082__ $$a570
000830016 1001_ $$0P:(DE-HGF)0$$aHess, Moritz$$b0
000830016 245__ $$aTranscriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat
000830016 260__ $$aLondon$$bBioMed Central$$c2016
000830016 3367_ $$2DRIVER$$aarticle
000830016 3367_ $$2DataCite$$aOutput Types/Journal article
000830016 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1495178246_3835
000830016 3367_ $$2BibTeX$$aARTICLE
000830016 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000830016 3367_ $$00$$2EndNote$$aJournal Article
000830016 520__ $$aBackgroundLocal adaptation and phenotypic plasticity are important components of plant responses to variations in environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25 adult trees using deep RNA sequencing (RNA-Seq).ResultsUsing linear mixed models we investigated the effect of temperature, soil water availability and photoperiod on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene expression responses to temperature, soil water availability and photoperiod that are highly conserved among many plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to the expression differences observed between individual trees. Although the effect of environment on global transcript expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low, since only 21 of all detected transcripts showed a GxE interaction.ConclusionsThe majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental conditions. The small variation between individuals and populations suggests strong conservation of this response within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental conditions are only weakly affected by local adaptation in Douglas-fir.
000830016 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000830016 588__ $$aDataset connected to CrossRef
000830016 7001_ $$0P:(DE-HGF)0$$aWildhagen, Henning$$b1
000830016 7001_ $$0P:(DE-Juel1)168454$$aJunker, Laura$$b2
000830016 7001_ $$0P:(DE-HGF)0$$aEnsminger, Ingo$$b3$$eCorresponding author
000830016 773__ $$0PERI:(DE-600)2041499-7$$a10.1186/s12864-016-3022-6$$gVol. 17, no. 1, p. 682$$n1$$p682$$tBMC genomics$$v17$$x1471-2164$$y2016
000830016 8564_ $$uhttps://juser.fz-juelich.de/record/830016/files/Hess%20et%20al%202016.pdf$$yOpenAccess
000830016 8564_ $$uhttps://juser.fz-juelich.de/record/830016/files/Hess%20et%20al%202016.gif?subformat=icon$$xicon$$yOpenAccess
000830016 8564_ $$uhttps://juser.fz-juelich.de/record/830016/files/Hess%20et%20al%202016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000830016 8564_ $$uhttps://juser.fz-juelich.de/record/830016/files/Hess%20et%20al%202016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000830016 8564_ $$uhttps://juser.fz-juelich.de/record/830016/files/Hess%20et%20al%202016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000830016 909CO $$ooai:juser.fz-juelich.de:830016$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000830016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168454$$aForschungszentrum Jülich$$b2$$kFZJ
000830016 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000830016 9141_ $$y2017
000830016 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830016 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000830016 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000830016 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000830016 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000830016 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC GENOMICS : 2015
000830016 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000830016 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000830016 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000830016 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000830016 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000830016 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000830016 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000830016 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000830016 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000830016 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000830016 920__ $$lyes
000830016 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000830016 980__ $$ajournal
000830016 980__ $$aVDB
000830016 980__ $$aUNRESTRICTED
000830016 980__ $$aI:(DE-Juel1)IBG-2-20101118
000830016 9801_ $$aFullTexts