000830092 001__ 830092
000830092 005__ 20240712113057.0
000830092 0247_ $$2doi$$a10.1016/j.electacta.2017.03.092
000830092 0247_ $$2ISSN$$a0013-4686
000830092 0247_ $$2ISSN$$a1873-3859
000830092 0247_ $$2WOS$$aWOS:000398330200039
000830092 0247_ $$2altmetric$$aaltmetric:21833860
000830092 037__ $$aFZJ-2017-03681
000830092 082__ $$a540
000830092 1001_ $$0P:(DE-Juel1)168275$$aImholt, Laura$$b0$$eCorresponding author
000830092 245__ $$aTrimethylsiloxy based metal complexes as electrolyte additives for high voltage application in lithium ion cells
000830092 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000830092 3367_ $$2DRIVER$$aarticle
000830092 3367_ $$2DataCite$$aOutput Types/Journal article
000830092 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1495084717_24794
000830092 3367_ $$2BibTeX$$aARTICLE
000830092 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000830092 3367_ $$00$$2EndNote$$aJournal Article
000830092 520__ $$aPrevious studies have shown that electrolyte additives based on metals and semimetals (LiBOB, Mg(TFSI)2, Al(TFSI)3) as well as additives containing trimethylsiloxyl (TMS) groups as ligands can have positive impact on the cycling performance of lithium ion battery cells due to solid electrolyte interphase (SEI) and/or cathode electrolyte interphase (CEI) film forming properties and/or scavenging properties towards acidic impurities. In this study, both active functionalities (metal core and trialkylsiloxy based ligands) were combined into one using Al, Ti and B as metal cores combined with TMS ligands (M(TMS)x). All investigated additives M(TMS)x were able to improve the cycling performance regarding Coulombic efficiency, energy efficiency and capacity retention of LiNi1/3Co1/3Mn1/3O2 (NCM111)/Li half-cells and NCM111/graphite full-cells at high potentials (>4.3 V vs. Li/Li+). The formed CEI was studied by means of electrochemical impedance spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The obtained results indicate that the investigated additives are either actively incorporated into the formed CEI layer (in case of Al, Ti as metal core) or interacting with decomposition products (in case of B as metal core) resulting in lower charge-transfer impedance and hence improved long-term cycling behavior.
000830092 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000830092 588__ $$aDataset connected to CrossRef
000830092 7001_ $$0P:(DE-HGF)0$$aRöser, Stephan$$b1$$eCorresponding author
000830092 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b2
000830092 7001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b3
000830092 7001_ $$0P:(DE-Juel1)167131$$aRezaei Rad, Babak$$b4
000830092 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5
000830092 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b6
000830092 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2017.03.092$$gVol. 235, p. 332 - 339$$p332 - 339$$tElectrochimica acta$$v235$$x0013-4686$$y2017
000830092 8564_ $$uhttps://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.pdf$$yRestricted
000830092 8564_ $$uhttps://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.gif?subformat=icon$$xicon$$yRestricted
000830092 8564_ $$uhttps://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000830092 8564_ $$uhttps://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000830092 8564_ $$uhttps://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000830092 8564_ $$uhttps://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000830092 909CO $$ooai:juser.fz-juelich.de:830092$$pVDB
000830092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168275$$aForschungszentrum Jülich$$b0$$kFZJ
000830092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167131$$aForschungszentrum Jülich$$b4$$kFZJ
000830092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000830092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b6$$kFZJ
000830092 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000830092 9141_ $$y2017
000830092 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000830092 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2015
000830092 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830092 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000830092 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000830092 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000830092 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000830092 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000830092 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000830092 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000830092 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000830092 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000830092 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000830092 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000830092 980__ $$ajournal
000830092 980__ $$aVDB
000830092 980__ $$aI:(DE-Juel1)IEK-12-20141217
000830092 980__ $$aUNRESTRICTED
000830092 981__ $$aI:(DE-Juel1)IMD-4-20141217