001     830092
005     20240712113057.0
024 7 _ |a 10.1016/j.electacta.2017.03.092
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a WOS:000398330200039
|2 WOS
024 7 _ |a altmetric:21833860
|2 altmetric
037 _ _ |a FZJ-2017-03681
082 _ _ |a 540
100 1 _ |a Imholt, Laura
|0 P:(DE-Juel1)168275
|b 0
|e Corresponding author
245 _ _ |a Trimethylsiloxy based metal complexes as electrolyte additives for high voltage application in lithium ion cells
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1495084717_24794
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Previous studies have shown that electrolyte additives based on metals and semimetals (LiBOB, Mg(TFSI)2, Al(TFSI)3) as well as additives containing trimethylsiloxyl (TMS) groups as ligands can have positive impact on the cycling performance of lithium ion battery cells due to solid electrolyte interphase (SEI) and/or cathode electrolyte interphase (CEI) film forming properties and/or scavenging properties towards acidic impurities. In this study, both active functionalities (metal core and trialkylsiloxy based ligands) were combined into one using Al, Ti and B as metal cores combined with TMS ligands (M(TMS)x). All investigated additives M(TMS)x were able to improve the cycling performance regarding Coulombic efficiency, energy efficiency and capacity retention of LiNi1/3Co1/3Mn1/3O2 (NCM111)/Li half-cells and NCM111/graphite full-cells at high potentials (>4.3 V vs. Li/Li+). The formed CEI was studied by means of electrochemical impedance spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The obtained results indicate that the investigated additives are either actively incorporated into the formed CEI layer (in case of Al, Ti as metal core) or interacting with decomposition products (in case of B as metal core) resulting in lower charge-transfer impedance and hence improved long-term cycling behavior.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Röser, Stephan
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Börner, Markus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Streipert, Benjamin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rezaei Rad, Babak
|0 P:(DE-Juel1)167131
|b 4
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 5
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 6
773 _ _ |a 10.1016/j.electacta.2017.03.092
|g Vol. 235, p. 332 - 339
|0 PERI:(DE-600)1483548-4
|p 332 - 339
|t Electrochimica acta
|v 235
|y 2017
|x 0013-4686
856 4 _ |u https://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830092/files/1-s2.0-S0013468617305625-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:830092
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168275
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167131
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)171204
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21