000830108 001__ 830108
000830108 005__ 20210131030649.0
000830108 0247_ $$2doi$$a10.1109/TNS.2017.2691546
000830108 0247_ $$2ISSN$$a0018-9499
000830108 0247_ $$2ISSN$$a1558-1578
000830108 0247_ $$2WOS$$aWOS:000401949800002
000830108 0247_ $$2altmetric$$aaltmetric:21833862
000830108 037__ $$aFZJ-2017-03691
000830108 082__ $$a620
000830108 1001_ $$0P:(DE-Juel1)159131$$aBerneking, Arne$$b0
000830108 245__ $$aDesign and Characterization of a Gradient-Transparent RF Copper Shield for PET Detector Modules in Hybrid MR-PET Imaging
000830108 260__ $$aNew York, NY$$bIEEE$$c2017
000830108 3367_ $$2DRIVER$$aarticle
000830108 3367_ $$2DataCite$$aOutput Types/Journal article
000830108 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1495105458_24798
000830108 3367_ $$2BibTeX$$aARTICLE
000830108 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000830108 3367_ $$00$$2EndNote$$aJournal Article
000830108 520__ $$aThis paper focuses on the design and the characterization of a frequency-selective shield for positron emission tomography (PET) detector modules of hybrid magnetic resonance-PET scanners, where the shielding of the PET cassettes is located close to the observed object. The proposed shielding configuration is designed and optimized to guarantee a high shielding effectiveness (SE) of up to 60 dB for B1 -fields at the Larmor frequency of 64 MHz, thus preventing interactions between the radio-frequency (RF) coil and PET electronics. On the other hand, the shield is transparent to the gradient fields with the consequence that eddy-current artifacts in the acquired EPI images are significantly reduced with respect to the standard solid-shield configuration. The frequency-selective behavior of the shield is characterized and validated via simulation studies with CST MICROWAVE STUDIO in the megahertz and kilohertz range. Bench measurements with an RF coil built in-house demonstrated the high SE at the Larmor frequency. Moreover, measurements on a 4-T human scanner confirmed the abolishment of eddy current artifact and also provided an understanding of where the eddy currents occur with respect to the sequence parameters. Simulations and measurements for the proposed shielding concept were compared with a solid copper shielding configuration.
000830108 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000830108 588__ $$aDataset connected to CrossRef
000830108 7001_ $$0P:(DE-HGF)0$$aTrinchero, Riccardo$$b1
000830108 7001_ $$0P:(DE-Juel1)159538$$aHa, YongHyun$$b2$$ufzj
000830108 7001_ $$0P:(DE-Juel1)169335$$aFinster, Felix$$b3
000830108 7001_ $$0P:(DE-HGF)0$$aCerello, Piergiorgio$$b4
000830108 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph$$b5$$ufzj
000830108 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b6$$ufzj
000830108 773__ $$0PERI:(DE-600)2025398-9$$a10.1109/TNS.2017.2691546$$gp. 1 - 1$$n5$$p1118-1127$$tIEEE transactions on nuclear science$$v64$$x1558-1578$$y2017
000830108 8564_ $$uhttps://juser.fz-juelich.de/record/830108/files/07893778.pdf$$yRestricted
000830108 8564_ $$uhttps://juser.fz-juelich.de/record/830108/files/07893778.gif?subformat=icon$$xicon$$yRestricted
000830108 8564_ $$uhttps://juser.fz-juelich.de/record/830108/files/07893778.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000830108 8564_ $$uhttps://juser.fz-juelich.de/record/830108/files/07893778.jpg?subformat=icon-180$$xicon-180$$yRestricted
000830108 8564_ $$uhttps://juser.fz-juelich.de/record/830108/files/07893778.jpg?subformat=icon-640$$xicon-640$$yRestricted
000830108 8564_ $$uhttps://juser.fz-juelich.de/record/830108/files/07893778.pdf?subformat=pdfa$$xpdfa$$yRestricted
000830108 909CO $$ooai:juser.fz-juelich.de:830108$$pVDB
000830108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159131$$aForschungszentrum Jülich$$b0$$kFZJ
000830108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159538$$aForschungszentrum Jülich$$b2$$kFZJ
000830108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b5$$kFZJ
000830108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ
000830108 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000830108 9141_ $$y2017
000830108 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T NUCL SCI : 2015
000830108 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830108 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000830108 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000830108 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000830108 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000830108 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000830108 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000830108 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000830108 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000830108 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000830108 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000830108 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000830108 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000830108 980__ $$ajournal
000830108 980__ $$aVDB
000830108 980__ $$aI:(DE-Juel1)INM-4-20090406
000830108 980__ $$aI:(DE-82)080010_20140620
000830108 980__ $$aUNRESTRICTED