000830124 001__ 830124 000830124 005__ 20240619091226.0 000830124 0247_ $$2Handle$$a2128/15922 000830124 0247_ $$2URN$$aurn:nbn:de:0001-2017121302 000830124 0247_ $$2ISSN$$a1866-1807 000830124 020__ $$a978-3-95806-265-8 000830124 037__ $$aFZJ-2017-03703 000830124 1001_ $$0P:(DE-Juel1)159559$$aKireev, Dmitry$$b0$$eCorresponding author$$gmale$$ufzj 000830124 245__ $$aGraphene Devices for Extracellular Measurements$$f- 2017-03-31 000830124 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2017 000830124 300__ $$aIX, 169 S. 000830124 3367_ $$2DataCite$$aOutput Types/Dissertation 000830124 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook 000830124 3367_ $$2ORCID$$aDISSERTATION 000830124 3367_ $$2BibTeX$$aPHDTHESIS 000830124 3367_ $$02$$2EndNote$$aThesis 000830124 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1511277299_23755 000830124 3367_ $$2DRIVER$$adoctoralThesis 000830124 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v155 000830124 502__ $$aRWTH Aachen, Diss., 2017$$bDr.$$cRWTH Aachen$$d2017 000830124 520__ $$aRecording extracellular potentials from electrogenic cells (especially neurons) is the hallmark destination of modern bioelectronics. Graphene is a promising material, which possesses features relevant to bioelectronics applications. Graphene-based electrode arrays (GMEAs) and more complicated graphene field effect transistors (GFETs) comprise a new type of bioelectronic device application. Biocompatibility, stability, excellent and unique electronic properties, scalability, and pure two-dimensional structure make graphene the perfect material for bioelectronic applications. The advantages of graphene as part of such devices are numerous: from a general exibility and biocompatibility to the unique electronic properties of graphene. In this work, the GMEAs and GFETs are fabricated using CVD-grown graphene and a scalable cleanroom-based technology. The devices are fabricated on both rigid and exible substrates. In order to ensure a wafer-scale fabrication of the devices, a new high throughput graphene transfer technique is established. The technique allows me to use just 4 cm$^{2}$ of CVD-grown graphene to fabricate a whole 4-inch wafer with 52 chips on it. Rigid GFETs, fabricated on different substrates, with a variety of channel geometries (width/length), reveal a linear relation between the transconductance and the width/length ratio. The area normalized electrolyte-gated transconductance is in the range of 1-2 mS V$^{−1}$ $\Box$, and does not strongly depend on the substrate. Influence of the ionic strength on the transistor performance is investigated as a part of the work. Double contacts are found to decrease the effective resistance and the transfer length, but do not improve the transconductance. An electrochemical annealing/cleaning effect is investigated and proposed to originate from the out-of-plane gate leakage current. The devices are used as a proof-of-concept for bioelectronic sensors, recording external potentials from $\textit{ex vivo}$ heart tissue and $\textit{in vitro}$ cardiomyocyte-like cells (HL-1). Via multichannel measurements we are able to record and analyze both difference in action potentials as well as their spatial propagation through the chip. The recordings show distinguishable action potentials with a signal to noise ratio over 14 from $\textit{ex vivo}$ tissue and over 6 from the cardiac-like cell line $\textit{in vitro}$. Furthermore, I accomplished $\textit{in vitro}$ recordings of neuronal signals with a distinguishable bursting activity for the first time. [...] 000830124 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0 000830124 650_7 $$xDiss. 000830124 8564_ $$uhttps://juser.fz-juelich.de/record/830124/files/Schluesseltech_155.pdf$$yOpenAccess 000830124 8564_ $$uhttps://juser.fz-juelich.de/record/830124/files/Schluesseltech_155.gif?subformat=icon$$xicon$$yOpenAccess 000830124 8564_ $$uhttps://juser.fz-juelich.de/record/830124/files/Schluesseltech_155.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000830124 8564_ $$uhttps://juser.fz-juelich.de/record/830124/files/Schluesseltech_155.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000830124 8564_ $$uhttps://juser.fz-juelich.de/record/830124/files/Schluesseltech_155.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000830124 8564_ $$uhttps://juser.fz-juelich.de/record/830124/files/Schluesseltech_155.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000830124 909CO $$ooai:juser.fz-juelich.de:830124$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire 000830124 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000830124 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000830124 9141_ $$y2017 000830124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159559$$aForschungszentrum Jülich$$b0$$kFZJ 000830124 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0 000830124 920__ $$lyes 000830124 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0 000830124 9801_ $$aFullTexts 000830124 980__ $$aphd 000830124 980__ $$aVDB 000830124 980__ $$aUNRESTRICTED 000830124 980__ $$abook 000830124 980__ $$aI:(DE-Juel1)ICS-8-20110106 000830124 981__ $$aI:(DE-Juel1)IBI-3-20200312