000830148 001__ 830148
000830148 005__ 20210129230430.0
000830148 0247_ $$2doi$$a10.1021/acs.jpcb.7b03510
000830148 0247_ $$2ISSN$$a1089-5647
000830148 0247_ $$2ISSN$$a1520-5207
000830148 0247_ $$2ISSN$$a1520-6106
000830148 0247_ $$2WOS$$aWOS:000403731400009
000830148 0247_ $$2altmetric$$aaltmetric:20784838
000830148 0247_ $$2pmid$$apmid:28520443
000830148 037__ $$aFZJ-2017-03725
000830148 082__ $$a530
000830148 1001_ $$0P:(DE-HGF)0$$aDa Vela, Stefano$$b0
000830148 245__ $$aEffective Interactions and Colloidal Stability of Bovine γ-Globulin in Solution
000830148 260__ $$aWashington, DC$$bSoc.$$c2017
000830148 3367_ $$2DRIVER$$aarticle
000830148 3367_ $$2DataCite$$aOutput Types/Journal article
000830148 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1497945645_12122
000830148 3367_ $$2BibTeX$$aARTICLE
000830148 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000830148 3367_ $$00$$2EndNote$$aJournal Article
000830148 520__ $$aInteractions and phase behavior of serum albumin and γ-globulin are of fundamental interest in biophysical and pharmaceutical research, as these are the most abundant proteins in blood plasma. In this work, we report the characterization of the oligomeric state of bovine γ-globulin, the effective protein-protein interactions and the colloidal stability in aqueous solution as a function of protein concentration and ionic strength. Classical biochemical techniques, such as size exclusion chromatography (SEC) and gel electrophoresis together with small angle X-ray and neutron scattering (SAXS/SANS) were employed for this study. The results show that bovine γ-globulin solutions are dominated by monomer and idiotype anti-idiotype dimer. Despite the flexibility and highly non-spherical shape of the protein, a simple model with a disk-type form factor and a structure factor of a square-well potential provide a valid description of the scattering data. The overall interactions are attractive and the strength decreases with increasing protein concentration, or adding buffer or salts. For higher protein volume fraction (> 7%), the model leads to a strong particle-particle correlation which does not appear in the experimental data. This mismatch is most likely due to the smearing effect of the conformation change of proteins in solution. The stability of γ-globulin solutions is highly sensitive to protein concentration, ionic strength and to the type of added salts, such as NaCl, Na2SO4 and NaSCN. For solutions below 50 mg/mL and at low ionic strengths (< 0.1M), protein aggregation is most likely due to subpopulations of IgG molecules with attractive patches of complementary surface charge. This effect is reduced for higher protein concentration due to the self-buffering effects. For high ionic strength (> 1M), typical salting-in and salting-out effects are observed. Results are further discussed in comparison with current studies in the literature on monoclonal antibodies.
000830148 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000830148 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000830148 588__ $$aDataset connected to CrossRef
000830148 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000830148 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x1
000830148 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000830148 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000830148 7001_ $$0P:(DE-HGF)0$$aRoosen-Runge, Felix$$b1
000830148 7001_ $$0P:(DE-HGF)0$$aSkoda, Maximilian W. A.$$b2
000830148 7001_ $$0P:(DE-HGF)0$$aJacobs, Robert M. J.$$b3
000830148 7001_ $$0P:(DE-HGF)0$$aSeydel, Tilo$$b4
000830148 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b5
000830148 7001_ $$0P:(DE-HGF)0$$aSztucki, Michael$$b6
000830148 7001_ $$0P:(DE-HGF)0$$aSchweins, Ralf$$b7
000830148 7001_ $$0P:(DE-HGF)0$$aZhang, Fajun$$b8$$eCorresponding author
000830148 7001_ $$0P:(DE-HGF)0$$aSchreiber, Frank$$b9
000830148 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.7b03510$$gp. acs.jpcb.7b03510$$n23$$p5759–5769$$tThe @journal of physical chemistry <Washington, DC> / B$$v121$$x1089-5647$$y2017
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.pdf$$yRestricted
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.pdf$$yRestricted
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.gif?subformat=icon$$xicon$$yRestricted
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.jpg?subformat=icon-180$$xicon-180$$yRestricted
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.jpg?subformat=icon-640$$xicon-640$$yRestricted
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.pdf?subformat=pdfa$$xpdfa$$yRestricted
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.gif?subformat=icon$$xicon$$yRestricted
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.jpg?subformat=icon-180$$xicon-180$$yRestricted
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.jpg?subformat=icon-640$$xicon-640$$yRestricted
000830148 8564_ $$uhttps://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.pdf?subformat=pdfa$$xpdfa$$yRestricted
000830148 909CO $$ooai:juser.fz-juelich.de:830148$$pVDB$$pVDB:MLZ
000830148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b5$$kFZJ
000830148 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000830148 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000830148 9141_ $$y2017
000830148 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830148 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000830148 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000830148 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000830148 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000830148 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000830148 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000830148 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000830148 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000830148 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000830148 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2015
000830148 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000830148 920__ $$lyes
000830148 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000830148 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000830148 980__ $$ajournal
000830148 980__ $$aVDB
000830148 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000830148 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000830148 980__ $$aUNRESTRICTED