001     830148
005     20210129230430.0
024 7 _ |a 10.1021/acs.jpcb.7b03510
|2 doi
024 7 _ |a 1089-5647
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a WOS:000403731400009
|2 WOS
024 7 _ |a altmetric:20784838
|2 altmetric
024 7 _ |a pmid:28520443
|2 pmid
037 _ _ |a FZJ-2017-03725
082 _ _ |a 530
100 1 _ |a Da Vela, Stefano
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Effective Interactions and Colloidal Stability of Bovine γ-Globulin in Solution
260 _ _ |a Washington, DC
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1497945645_12122
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Interactions and phase behavior of serum albumin and γ-globulin are of fundamental interest in biophysical and pharmaceutical research, as these are the most abundant proteins in blood plasma. In this work, we report the characterization of the oligomeric state of bovine γ-globulin, the effective protein-protein interactions and the colloidal stability in aqueous solution as a function of protein concentration and ionic strength. Classical biochemical techniques, such as size exclusion chromatography (SEC) and gel electrophoresis together with small angle X-ray and neutron scattering (SAXS/SANS) were employed for this study. The results show that bovine γ-globulin solutions are dominated by monomer and idiotype anti-idiotype dimer. Despite the flexibility and highly non-spherical shape of the protein, a simple model with a disk-type form factor and a structure factor of a square-well potential provide a valid description of the scattering data. The overall interactions are attractive and the strength decreases with increasing protein concentration, or adding buffer or salts. For higher protein volume fraction (> 7%), the model leads to a strong particle-particle correlation which does not appear in the experimental data. This mismatch is most likely due to the smearing effect of the conformation change of proteins in solution. The stability of γ-globulin solutions is highly sensitive to protein concentration, ionic strength and to the type of added salts, such as NaCl, Na2SO4 and NaSCN. For solutions below 50 mg/mL and at low ionic strengths (< 0.1M), protein aggregation is most likely due to subpopulations of IgG molecules with attractive patches of complementary surface charge. This effect is reduced for higher protein concentration due to the self-buffering effects. For high ionic strength (> 1M), typical salting-in and salting-out effects are observed. Results are further discussed in comparison with current studies in the literature on monoclonal antibodies.
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 0
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 1
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS2-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|x 0
700 1 _ |a Roosen-Runge, Felix
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Skoda, Maximilian W. A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jacobs, Robert M. J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Seydel, Tilo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Frielinghaus, Henrich
|0 P:(DE-Juel1)130646
|b 5
700 1 _ |a Sztucki, Michael
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schweins, Ralf
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zhang, Fajun
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Schreiber, Frank
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1021/acs.jpcb.7b03510
|g p. acs.jpcb.7b03510
|0 PERI:(DE-600)2006039-7
|n 23
|p 5759–5769
|t The @journal of physical chemistry / B
|v 121
|y 2017
|x 1089-5647
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/InteractionsStabilityBGG.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830148/files/acs.jpcb.7b03510.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:830148
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130646
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 0
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2015
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21