000830149 001__ 830149
000830149 005__ 20210129230431.0
000830149 020__ $$a978-3-319-58770-7 (print)
000830149 020__ $$a978-3-319-58771-4 (electronic)
000830149 0247_ $$2doi$$a10.1007/978-3-319-58771-4_6
000830149 0247_ $$2ISSN$$a0302-9743
000830149 0247_ $$2ISSN$$a1611-3349
000830149 0247_ $$2WOS$$aWOS:000432210900006
000830149 037__ $$aFZJ-2017-03726
000830149 041__ $$aEnglish
000830149 082__ $$a004
000830149 1001_ $$0P:(DE-HGF)0$$aHoeltgen, Laurent$$b0$$eCorresponding author
000830149 1112_ $$a6th International Conference on Scale Space and Variational Methods in Computer Vision$$cKolding$$d2017-06-04 - 2017-06-08$$gSSVM 2017$$wDänemark
000830149 245__ $$aAnalytic Existence and Uniqueness Results for PDE-Based Image Reconstruction with the Laplacian
000830149 260__ $$aCham$$bSpringer International Publishing$$c2017
000830149 29510 $$aScale Space and Variational Methods in Computer Vision / Lauze, François (Editor) ; Cham : Springer International Publishing, 2017, Chapter 6 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-319-58770-7=978-3-319-58771-4
000830149 300__ $$a66 - 79
000830149 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$mcontrib
000830149 3367_ $$2ORCID$$aBOOK_CHAPTER
000830149 3367_ $$07$$2EndNote$$aBook Section
000830149 3367_ $$2DRIVER$$abookPart
000830149 3367_ $$2BibTeX$$aINBOOK
000830149 3367_ $$2DataCite$$aOutput Types/Book chapter
000830149 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1495453707_25480
000830149 4900_ $$aLecture Notes in Computer Science$$v10302
000830149 520__ $$aPartial differential equations are well suited for dealing with image reconstruction tasks such as inpainting. One of the most successful mathematical frameworks for image reconstruction relies on variations of the Laplace equation with different boundary conditions. In this work we analyse these formulations and discuss the existence and uniqueness of solutions of corresponding boundary value problems, as well as their regularity from an analytic point of view. Our work not only sheds light on useful aspects of the well posedness of several standard problem formulations in image reconstruction but also aggregates them in a common framework. In addition, the performed analysis guides us to specify two new formulations of the classic image reconstruction problem that may give rise to new developments in image reconstruction.
000830149 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000830149 588__ $$aDataset connected to CrossRef Book Series
000830149 7001_ $$0P:(DE-HGF)0$$aHarris, Isaac$$b1
000830149 7001_ $$0P:(DE-HGF)0$$aBreuß, Michael$$b2
000830149 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b3$$ufzj
000830149 773__ $$a10.1007/978-3-319-58771-4_6
000830149 909CO $$ooai:juser.fz-juelich.de:830149$$pVDB
000830149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b3$$kFZJ
000830149 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000830149 9141_ $$y2017
000830149 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000830149 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830149 920__ $$lno
000830149 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000830149 980__ $$acontb
000830149 980__ $$aVDB
000830149 980__ $$acontrib
000830149 980__ $$aI:(DE-Juel1)JSC-20090406
000830149 980__ $$aUNRESTRICTED